www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - grenzwertbestimmung
grenzwertbestimmung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

grenzwertbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:49 Sa 07.02.2009
Autor: simplify

Aufgabe
existiert für die folge ein grenzwert,wenn ja welcher?
[mm] \limes_{n\rightarrow\infty} (1+\bruch{1}{n})^{2n} [/mm]

also ich hab das ganze einfach abgeschätzt und komme auf den grenzwert 1.
[mm] \bruch{1}{n} [/mm] geht gegen 0, also geht das innere der klammer gegen 1 und 1 zum exponenten [mm] \infty [/mm] ist 1, oder?

        
Bezug
grenzwertbestimmung: nicht richtig
Status: (Antwort) fertig Status 
Datum: 13:56 Sa 07.02.2009
Autor: Loddar

Hallo simplify!


Das stimmt so nicht! Kennst du folgenden Grenzwert:
[mm] $$\limes_{n\rightarrow\infty}\left(1+\bruch{1}{n}\right)^n$$ [/mm]

Damit kannst Du Deinen gesuchten Grenzwert ermitteln mittels Umformung und MBGrenzwertsatz:
[mm] $$\left(1+\bruch{1}{n}\right)^{2n} [/mm] \ = \ [mm] \left(1+\bruch{1}{n}\right)^{n+n} [/mm] \ = \ [mm] \left(1+\bruch{1}{n}\right)^n*\left(1+\bruch{1}{n}\right)^n$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
grenzwertbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:19 Sa 07.02.2009
Autor: simplify

ja ok, stimmt. aber das ändert doch nichts an dem grenzwert 1,oder? also egal was ich da umforme,komme ich auf 1.
rausgefunden habe ich ,dass [mm] \limes_{n\rightarrow\infty} [/mm] (1+ [mm] \bruch{1}{n})^n [/mm] = e ,aber warum denn?

Bezug
                        
Bezug
grenzwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:21 Sa 07.02.2009
Autor: schachuzipus

Hallo simplify,

> ja ok, stimmt. aber das ändert doch nichts an dem grenzwert
> 1,oder? also egal was ich da umforme,komme ich auf 1.

[haee]

Loddar hat doch die Umformung vorgerechnet

[mm] $\left(1+\frac{1}{n}\right)^{2n} [/mm] \ = \ [mm] \underbrace{\left(1+\frac{1}{n}\right)^{n}}_{\rightarrow e \ \text{für} \ n\to\infty}\cdot{}\underbrace{\left(1+\frac{1}{n}\right)^{n}}_{\rightarrow e \ \text{für} \ n\to\infty} [/mm] \ [mm] \longrightarrow e\cdot{}e [/mm] \ = \ [mm] e^2 [/mm] \ \ \ [mm] \text{für} [/mm] \  [mm] n\to\infty$ [/mm]

>  rausgefunden habe ich ,dass [mm]\limes_{n\rightarrow\infty}[/mm]  (1+ [mm]\bruch{1}{n})^n[/mm] = e ,aber warum denn?

Das ist Definitionssache, eine Möglichkeit, die eulersche Zahl e zu definieren, ist als Grenzwert ebenjener obigen Folge, also als [mm] $\lim\limits_{n\to\infty}\left(1+\frac{1}{n}\right)^n$. [/mm]

Eine andere Defintion ist über die Exponentialreihe [mm] $e^x=\sum\limits_{n=0}^{\infty}\frac{1}{n!}\cdot{}x^n$, [/mm] also [mm] $e=\sum\limits_{n=0}^{\infty}\frac{1}{n!}$ [/mm]

LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]