www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - grenzwert zeigen
grenzwert zeigen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

grenzwert zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:08 Mi 04.11.2009
Autor: meep

Aufgabe
zeigen sie, dass [mm] \limes_{n\rightarrow\infty} \summe_{k=1}^{n} \bruch{1}{n+k} [/mm] = [mm] D-\integral_{1}^{2}{\bruch{1}{x} dx} [/mm]

wobei [mm] D-\integral_{1}^{2}{\bruch{1}{x} dx} [/mm] das Darboux integral ist

hallo zusammen,

ich hab keine ahnung wie ich das zeigen soll, wenn mir jemand einen guten tipp geben könnte wäre ich sehr dankbar, ich komm auf nichts brauchbares.

mfg

meep

        
Bezug
grenzwert zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:56 Fr 06.11.2009
Autor: MatthiasKr

Hallo,
> zeigen sie, dass [mm]\limes_{n\rightarrow\infty} \summe_{k=1}^{n} \bruch{1}{n+k}[/mm]
> = [mm]D-\integral_{1}^{2}{\bruch{1}{x} dx}[/mm]
>  
> wobei [mm]D-\integral_{1}^{2}{\bruch{1}{x} dx}[/mm] das Darboux
> integral ist
>  hallo zusammen,

was ist denn $D$?

gruss
Matthias

  

> ich hab keine ahnung wie ich das zeigen soll, wenn mir
> jemand einen guten tipp geben könnte wäre ich sehr
> dankbar, ich komm auf nichts brauchbares.
>  
> mfg
>  
> meep


Bezug
                
Bezug
grenzwert zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:21 Sa 07.11.2009
Autor: meep

hi,

das d steht für darboux, wäre ein r davor stünde es für riemann, so haben wir das in der vorlesung eingeführt, im endeffekt nicht so wichtig.

mfg

meep


Bezug
        
Bezug
grenzwert zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:35 Sa 07.11.2009
Autor: reverend

Hallo meep,

komische Notation.

Zu zeigen ist eigentlich dies:
[mm] \limes_{n\rightarrow\infty} \summe_{k=1}^{n} \bruch{1}{n+k}=\integral_{1}^{2}{\bruch{1}{x} dx}=\ln{2} [/mm]

Nun betrachte doch mal die Funktion [mm] \tfrac{1}{x} [/mm] im Bereich [mm] x\in[1,2] [/mm] nach Riemanns (oder Darboux') Weise, so dass Du gerade diese Summen erhältst:

[mm] \tfrac{1}{2};\quad \tfrac{1}{3}+\tfrac{1}{4};\quad \tfrac{1}{4}+\tfrac{1}{5}+\tfrac{1}{6};\quad \tfrac{1}{5}+\tfrac{1}{6}+\tfrac{1}{7}+\tfrac{1}{8} [/mm] etc.

Vielleicht fällt der Groschen schneller, wenn Du die Summen anders schreibst:

[mm] \blue{1*}\left(\tfrac{1}{2}\right);\quad \blue{\tfrac{1}{2}*}\left(\tfrac{\blue{2}}{3}+\tfrac{\blue{2}}{4}\right);\quad \blue{\tfrac{1}{3}*}\left(\tfrac{\blue{3}}{4}+\tfrac{\blue{3}}{5}+\tfrac{\blue{3}}{6}\right);\quad \blue{\tfrac{1}{4}*}\left(\tfrac{\blue{4}}{5}+\tfrac{\blue{4}}{6}+\tfrac{\blue{4}}{7}+\tfrac{\blue{4}}{8}\right) [/mm] etc.

Wie Du siehst, habe ich die Brüche ungekürzt gelassen.

Immer noch nicht klar? Na dann, letzter Tipp: wenn [mm] f(x)=\tfrac{1}{x}=\tfrac{p}{q} [/mm] ist, wie groß ist dann x?

So, jetzt Du. ;-) Würdest Du eher Unter- oder Obersummen versuchen?

lg
reverend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]