www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - grenzwert von funktionen
grenzwert von funktionen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

grenzwert von funktionen: beweis
Status: (Frage) beantwortet Status 
Datum: 21:48 Di 11.01.2005
Autor: netti

hallo ihr!
ich brauche eure hilfe!!!
wie kann ich beweisen, dass für alle a  [mm] \in [/mm] [0,1) f(a+):= lim x [mm] \to [/mm] a+ f(x) existiert?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
grenzwert von funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:17 Di 11.01.2005
Autor: taura

Hi!

Ich weiß nicht, ob ich so richtig verstanden hab, was du meinst, aber wenns das ist, was ich mein, sollst du wohl zeigen, dass jeder Punkt in dem Intervall von oben angenähert werden kann, also, dass es zu jedem [mm]a \in [0,1)[/mm] eine Folge [mm] a_n [/mm] gibt mit [mm]a_n > a[/mm] für alle [mm]n \in \IN[/mm] und [mm]\limes_{n\rightarrow\infty}a_n=a[/mm].
Hierfür könnte man zum Beispiel [mm]a_n=a+c*\bruch{1}{n}[/mm]nehmen, wobei du dein c in Abhängigkeit von a so klein wählen musst, dass das größte Folgenglied nicht [mm] \ge [/mm] 1 wird, damit die Folge Teilmenge deines Intervalls bleibt.

Hoffe ich konnte dir helfen, bzw. ich habe die Frage richtig verstanden.
Gruß Biggi

Bezug
        
Bezug
grenzwert von funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:43 Mi 12.01.2005
Autor: Marcel

Hallo Netti,

> hallo ihr!
>  ich brauche eure hilfe!!!
>  wie kann ich beweisen, dass für alle a  [mm]\in[/mm] [0,1) f(a+):=
> lim x [mm]\to[/mm] a+ f(x) existiert?

Zunächst eine Bitte:
Benutze bitte den Formeleditor, allein schon, damit deine Frage leserlicher ist!

Nun zu deiner Frage:
Du behauptest also:
[m]\forall a \in [0,1)[/m] existiert stets [m]f(a^+)=\lim_{x \to a^+}f(x)[/m] für eine Funktion $f$?

Dann würde ich sagen, du hast vergessen, Informationen über $f$ mitzuliefern. Denn so, wie das da steht, kannst du das nicht beweisen, weil es so falsch ist.
Z.B. ist $f:[0,1) [mm] \to \{0,1\}$ [/mm] definiert durch

[m]f(x):=\begin{cases} 0, & \mbox{falls } x \in \IQ \\ 1, & \mbox{falls } x \in \IR \setminus \IQ \end{cases}[/m]

eine (z.B. weder stetige noch monotone) Funktion, für die z.B.
[mm]f\left(\frac{1}{2}^+\right)=\lim_{x \to \frac{1}{2}^+}f(x)[/mm]
nicht existiert (es gibt eine Folge [m](a_n)_{n \in \IN}[/m] in [m]\IQ_{>\frac{1}{2}}\cap [0,1)[/m], die gegen [m]\frac{1}{2}[/m] konvergiert und es gibt eine Folge [m](b_n)_{n \in \IN}[/m] in [m](\IR\setminus\IQ)_{>\frac{1}{2}}\cap [0,1)[/m], die gegen [m]\frac{1}{2}[/m] konvergiert, aber es gilt:
[m]\lim_{n \to \infty}f(a_n)=\lim_{n \to \infty}0=0\not=1=\lim_{n \to \infty}1=\lim_{n \to \infty}f(b_n)[/m], d.h. [m]f\left(\frac{1}{2}^+\right)[/m] existiert nicht!).

Viele Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]