www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - grenzwert l'hospital
grenzwert l'hospital < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

grenzwert l'hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:44 So 23.09.2007
Autor: deisler1985

Aufgabe
Bestimmen Sie die folgenden  Grenzwerte!
a) [mm] \limes_{x\rightarrow\infty}x^{(x^x)} [/mm]

b) [mm] \limes_{x\rightarrow\infty}{(x^x)^x} [/mm]

Und bei beiden konvergiert x gegen [mm] 0^{+}, [/mm] und nicht gegen [mm] \infty!!!!!! [/mm]

bei b) habe ich 1 raus. Ist das richtig?

bei a) habe ich schon mehrmals versucht. Wurde dann aber irgendwie komplizierter.

dabei habe ich bei beiden Aufgaben l´hopital benutzt.

Kann jemand mir helfen? Vielen Dank!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
grenzwert l'hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 02:32 So 23.09.2007
Autor: schachuzipus

Hallo deisler,

dein Ergebnis für (b) ist richtig, allerdings wäre es ganz nett,
hättest du deinen Lösungsweg gepostet.
Das erspart doch einiges an Rechenarbeit für uns ;-)

zu (a)

hier bin ich mir nicht ganz sicher, ich würde aber zuerst mal [mm] $x^{\left(x^x\right)}$ [/mm] umschreiben:

Also [mm] $x^{\left(x^x\right)}=x^{e^\red{x\cdot{}\ln(x)}}$ [/mm]

Nun würde ich mir mit de l'Hospital mal angucken, was mit [mm] $\red{x\cdot{}\ln(x)}$ [/mm] ist:

[mm] $x\cdot{}\ln(x)=\frac{\ln(x)}{\frac{1}{x}}$ [/mm]

Zähler und Nenner getrennt ableiten..

[mm] $\frac{\frac{1}{x}}{-\frac{1}{x^2}}=-x\longrightarrow [/mm] 0$ für [mm] $x\to [/mm] 0$

Also geht [mm] $e^{x\cdot{}\ln(x)}$ [/mm] gegen [mm] $e^0=1$ [/mm]

Und schließlich [mm] $x^{\left(x^x\right)}=x^{e^{x\cdot{}\ln(x)}}$ [/mm] gegen [mm] $0^1=0$ [/mm] für [mm] $x\to [/mm] 0$

Aber ohne Gewähr ;-)

LG

schachuzipus

Bezug
                
Bezug
grenzwert l'hospital: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:38 So 23.09.2007
Autor: deisler1985

Hallo schachuzipus,

vielen Dank für die schnelle Antwort. Deine Lösung müsste eigentlich richtig sein, glaube ich. ;-)

LG

deisler1985

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]