graphische Ableitung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Gegeben ist ein Graph f(x). Ermitteln Sie graphisch die dazugehörige Ableitungskurve f'(x). |
Hallo zusammen,
kann mir bitte mal jemand erklären, wie man graphisch eine Ableitungskurve ermittelt. Also z.B. einem Extrempunkt der Funktion f(x) ist die 1. Ableitung xxxxxx
Wäre über Hilfe sehr dankbar.
Lieben Gruß
Sarah
|
|
|
|
Falls du den Graph noch nicht auf irgendeinem Arbeitsblatt gegeben oder selbst gezeichnet hast, solltest du das jetzt tun.
Es gibt ein wesentliches Indiz, um die Lage einer Ableitungsfunktion schonmal ungefähr zu kennen:
1. Die Extremstellen: Wenn dein Graph von f(x) an irgendeiner Stelle ein Maximum / Minimum hat, so hat die erste Ableitung an dieser Stelle x den Wert y = 0, denn an solchen Stellen hat eine anliegende Tangente die Steigung 0.
Ansonsten läuft es jetzt immer darauf hinaus, an günstige Stellen x der Funktion die anliegende Tangente und ihre Steigung m zu bestimmen, und dann diesen Punkt (x,m) in den Graphen der Ableitungsfunktion entsprechend einzutragen.
Eine Tangente an den Graphen bestimmst du dadurch, dass du ein Lineal an eine Stelle so anlegst, dass es in unmittelbarer Nähe der angelegten Stelle x etwa den gleichen Abstand zur Funktion hat, etwa so:
[Dateianhang nicht öffentlich]
Die Steigung m der Tangente bestimmst du dann, in dem du nachmisst, um wieviel Einheiten die Tangente nach oben geht wenn ich einen x-Schritt nach rechts mache.
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|
|
Okay, also dass mit den Extremstellen hab ich verstanden.
Angenommen, ich hätte diesen Graphen:
[Externes Bild http://img369.imageshack.us/img369/8199/wendepunkt1bz6.gif]
die roten punkte sollen makieren, dass da punkte der ableitungskurve durchgehen (wie du gesagt hast, an den extremwerten der Funktion der y Wert 0).
Nun ist mit dem blauen Kästchen ein Wendepunkt eingezeichnet. Kann es sein, dass dort dann der Tiefpunkt der Ableitungskurve liegt? Und die Ableitungskurve im Eneffekt so aussieht (in rot):
[Externes Bild http://img165.imageshack.us/img165/9278/wendepunkt2bo4.gif]
Ist das richtig? Und wenn ja, was mache ich denn, wenn kein Wendepunkt vorhanden ist?
Lieben Gruß
und danke für deine Antwort
Sarah
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:43 Mo 26.05.2008 | Autor: | aram |
> Okay, also dass mit den Extremstellen hab ich verstanden.
>
> Angenommen, ich hätte diesen Graphen:
>
> [Externes Bild http://img369.imageshack.us/img369/8199/wendepunkt1bz6.gif]
>
> die roten punkte sollen makieren, dass da punkte der
> ableitungskurve durchgehen (wie du gesagt hast, an den
> extremwerten der Funktion der y Wert 0).
>
> Nun ist mit dem blauen Kästchen ein Wendepunkt
> eingezeichnet. Kann es sein, dass dort dann der Tiefpunkt der Ableitungskurve liegt?
genau so, denn f´´(x) ist gleichzeitig die erste Ableitung von f´(x)
> Und die Ableitungskurve im
> Eneffekt so aussieht (in rot):
>
> [Externes Bild http://img165.imageshack.us/img165/9278/wendepunkt2bo4.gif]
Der Graph ist richtig.
> Ist das richtig? Und wenn ja, was mache ich denn, wenn kein
> Wendepunkt vorhanden ist?
Dann gehst du halt nach den anderen Kriterien.
Schaue dir mal deine zweite Skizze genau an, fällt dir etwas auf?
Die Steigung der Funktion f(x) ist links vom ersten Extrempunkt und rechts vom zweiten Extrempunkt positiv. Deswegen ist in diesen Bereichen der Graph von f´(x) oberhalb der x-achse.
Zwischen den beiden Extrempunkten ist die Steigung der Funktion f(x) negativ, weshalb dort auch der Graph von f´(x) unterhalb der x-achse ist.
>
> Lieben Gruß
> und danke für deine Antwort
> Sarah
>
Probier es mal mit anderen Graphen
>
Mfg Aram
|
|
|
|
|
Super, ich glaube das habe ich verstanden. Ich danke euch beiden recht herzlich, toll, dass man hier so gute Hilfe bekommt
Habe jetzt mal versucht, von einem anderen Graphen die Ableitung graphisch zu bestimmen, um zu schauen ob ich es richtig verstanden habe. Wenn sich das noch jemand anschauen könnte, wäre ich glücklich
Graph in rot / orange, Ableitungskurve in schwarz:
Zeichnung im Anhang
Lieben Gruß
Sarah
Dateianhänge: Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:15 Mo 26.05.2008 | Autor: | aram |
Hey Sarah!
Das sieht ja super aus, und richtig ist es nebenbei auch noch.
Mfg Aram
|
|
|
|
|
Vielen lieben Dank, Aram Du hast mir sehr geholfen )
Lieben Gruß und einen schönen Abend noch
Sarah
|
|
|
|