www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - gleichvert. Zuvallsvariable
gleichvert. Zuvallsvariable < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gleichvert. Zuvallsvariable: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:22 Mo 26.11.2012
Autor: Sin777

Aufgabe
Sei X eine auf [0;1] gleichverteilte Zufallsvariable, d.h. X~U[0;1]. Berechne die Verteilungsfunktion,
die Dichte und den Erwartungswert von [mm] X^{2}. [/mm]

Hallo, ich bin leider mit den Begrifflichkeiten noch total überfragt. Könnte mir jemand mal konkret sagen, was der Definitions und der Wertebereich der Zufallsvariable ist? Was heißt gleichverteilt? Und wie komme ich auf eine Verteilungsfunktion?


Viele Grüße

        
Bezug
gleichvert. Zuvallsvariable: Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 Mo 26.11.2012
Autor: wieschoo

Hi,
> Sei X eine auf [0;1] gleichverteilte Zufallsvariable, d.h.
> X~U[0;1]. Berechne die Verteilungsfunktion,
>  die Dichte und den Erwartungswert von [mm]X^{2}.[/mm]
>  Hallo, ich bin leider mit den Begrifflichkeiten noch total
> überfragt. Könnte mir jemand mal konkret sagen, was der
> Definitions und der Wertebereich der Zufallsvariable ist?

Eine Zufallsvariable ist eine messbare Funktion [mm]X\colon \Omega \to \Omega'[/mm]. Und für Funktionen gibt es die bekannte Definition von den beiden

> Was heißt gleichverteilt? Und wie komme ich auf eine
> Verteilungsfunktion?

Das sind Fragen über Fragen.

Besuchst du eine Vorlesung? Dann solltest du dringen deine Mitschrift durcharbeiten.

Eine ZV X heißt gleichverteilt auf [a,b], falls ihre Dichtefunktion gegeben ist als
[mm]f(x)=\begin{cases} \frac 1{b-a} & a \le x \le b\\ 0 & \text{sonst}\end{cases}[/mm]

bzw. ihre Verteilungsfunktion gegeben ist als
[mm]F(x)= \begin{cases} 0 & x \le a\\ \frac{x-a}{b-a} & a < x < b\\ 1 & x\ge b\end{cases}[/mm]

Anfang:
Sei [mm] $X\sim \mathcal{U}[0,1]$. [/mm] Wir setzen [mm] $Y:=X^2$. [/mm]

Die Verteilungsfunktion von [mm]Y[/mm] bestimmt man, indem man
[mm]P(Y\le t)=\ldots[/mm] ausrechnet.

Für die Dichte differenziert man die richtige Funktion.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]