www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - gleichungssysteme
gleichungssysteme < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gleichungssysteme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:33 So 22.05.2005
Autor: Dschingis

hi,

ich habe ein paar verständnisfragen wegen zwei aufgaben:

bei einer habe ich ein gleichungssystem gegeben, das ich normal auflösen muß. dann ist die frage: wie groß ist die dim des zugehörigen homogenen systems. bedeutet dass, dass ich die gleichungen nun gleich null setzen muß? und dann eine der x-e wählen muß und aus den gleichungen eine matrix machen muß, bei der ich dann die dim berechnen muß?

dann das andere die aufgabe lautet:

diskutiere die lösungen des systems:

ax+y+z=1
x+ay+z=a
[mm] x+y+az=a^{2} [/mm]
für alle werte des parameters a.

wie ist das gemeint????

danke im voraus

greetz

dschingis

        
Bezug
gleichungssysteme: Antwort
Status: (Antwort) fertig Status 
Datum: 19:36 So 22.05.2005
Autor: phrygian

Hallo dschingis

Zu deiner ersten Frage: ich weiss zwar nicht genau, was du mit "eine der x-e wählen" meinst, aber ich denke, dass du auf dem richtigen Weg bist (Lösungssystem gleich null setzen etc.).

Zur zweiten Frage: ich vermute, dass du untersuchen musst, für welche Werte des Parameters a das Gleichungssystem eine, keine und unendlich viele Lösungen hat.

Hoffentlich ist das hilfreich.

Gruss
Georgios

Bezug
        
Bezug
gleichungssysteme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:59 Di 24.05.2005
Autor: Dschingis

hi, ich habe schon eine antwort auf eine vorherige frage bezüglich dieser aufgabe erhalten und zwr dass ich untersuchen muß, wann eine keine und unendlich viele lösungen vorliegen, weiß aber jetzt nicht so ganz genau, wie ich das angehen soll.

nochmal die aufgabe:

man diskutiere die lösungen des systems

ax+y+z=1
x+ay+z=a
[mm] x+y+yz=a^{2} [/mm]

für alle werte des parameters a.


weiß jetzt nicht so recht wieich dabei vorgehen muß

danke im voraus für die hilfe

greetz

dschingis

Bezug
                
Bezug
gleichungssysteme: Antwort
Status: (Antwort) fertig Status 
Datum: 11:14 Di 24.05.2005
Autor: Marc

Hallo dschingis,

> hi, ich habe schon eine antwort auf eine vorherige frage
> bezüglich dieser aufgabe erhalten und zwr dass ich

bitte stelle zusammenhängende Fragen im selben Diskussionsstrang.

> untersuchen muß, wann eine keine und unendlich viele
> lösungen vorliegen, weiß aber jetzt nicht so ganz genau,
> wie ich das angehen soll.
>  
> nochmal die aufgabe:
>  
> man diskutiere die lösungen des systems
>  
> ax+y+z=1
>  x+ay+z=a
>  [mm]x+y+yz=a^{2}[/mm]
>  
> für alle werte des parameters a.

Durch das Verschieben der Aufgabe ist mir auch aufgefallen, dass du einen Tippfehler in diesem Gleichungssystem hast. Nach Korrektur wird dieses Gleichungssystem linear, und kann mit den üblichen Verfahren gelöst werden.

1. Möglichkeit

Ich würde es so versuchen:
Bringe die Gleichungen in die umgekehrte Reihenfolge und forme das Gleichungssystem mit Hilfe des Gauß-Verfahrens um (also auf Dreiecksgestalt bringen).
Anhand der letzten Zeile kannst du dann deine Aufgabe beantworten (versuche es mal selbst, die nötigen Bedingungen für den Koeffizienten von z und für die rechte Seite herauszufinden).

2. Möglichkeit

Dieselbe Antworten kannst du auch mit Determinaten erhalten, und zwar, indem du die Hauptdeterminante und die drei Nebendeterminanten ausrechnest und aus ihren Werten die Lösbarkeit schlussfolgerst (Cramersche Regel).

Viel Erfolg,
Marc

Bezug
        
Bezug
gleichungssysteme: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:29 Di 24.05.2005
Autor: Dschingis

man diskutiere die lösungen des systems:

ax+y+z=1
x+ay+z=a
[mm] x+y+az=a^{2} [/mm]

für alle werte des parameters a

ich habe schon den tipp bekommen, dass ich schauen muß für eine, keine und unendlich viele lösungen, aber wie kann ich das anpacken, dass ich das untersuche?

danke im  voraus

greetz

dschingis

Bezug
                
Bezug
gleichungssysteme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:24 Di 24.05.2005
Autor: Dschingis

hi, ich habe ausversehen das nochmal gepostet, weil mein pc nicht angezeigt hat, dass das ganze schon online war.
eine mitteilung zu der antwort die ich bekommen habe, das was ich als system aufgeschrieben habe war schon richtig.
ichw erds mal über die matrix probieren

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]