www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - ggt abschätzung
ggt abschätzung < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ggt abschätzung: Tipp
Status: (Frage) überfällig Status 
Datum: 12:04 Mi 26.04.2017
Autor: dr.algebra

Aufgabe
Seien $m,n [mm] \in \IN, [/mm] m [mm] \ge [/mm] n$.Zeigen sie,dass es eindeutig bestimmte $x,y [mm] \in \IN_{0}$ [/mm] gibt mit den Eigenschaften

$mx-ny=(m,n), x [mm] \le \frac{n}{(m,n)},y [/mm] < [mm] \frac{m}{(m,n)}$ [/mm]

Hi leute ,

ich bräuchte ein wenig hilfe beim Beweis dieser Aufgabe

Erstmal zu $(m,n)$. Das ist laut definition aus dem Skript Seien$ m,n [mm] \in \IZ$. [/mm] Dann gibt es a) $(m,n) [mm] \in \IN_{0}$ [/mm] mit der Eigenschaft [mm] $m\IZ+n\IZ=(m,n)\IZ [/mm] $und b) [mm] $x,y\in \IZ$ [/mm]  mit der Eigenschaft $mx+ny=(m,n).$

da hackt es auch schon ich finde einfach keinen ansatz,indem ich dann meine Sätze aus dem Skript drin verwursten kann..:/


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
ggt abschätzung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:55 Mi 26.04.2017
Autor: leduart

Hallo
(m,n) ist offensichtlich eine Menge, sie definieren eine Restklasse. innerhalb ZZ. es ist deshalb eigenartig zu schreiben $ mx+ny=(m,n). $? hast du das wirklich so aufgeschrieben?
ebenso zu schreiben x<n/(m,n) wenn (m,n) keine Zahl ist.
hast du das wirklich exakt aufgeschrieben?
Gruß ledum

Bezug
        
Bezug
ggt abschätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:39 Mi 26.04.2017
Autor: dr.algebra

entschuldige bitte!,

ich habe mir nochmal Rat eingeholt und (m,n) soll bei uns der ggt(m,n) sein.Würde dir das helfen mir Tipps zu geben?

lg :)

Bezug
                
Bezug
ggt abschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:30 Fr 28.04.2017
Autor: Gonozal_IX

Hiho,

ich würde erst mal wie folgt rangehen:
Teile bei der ersten Gleichung mal durch $(m,n)$, dann erhälst du:

[mm] $\overline{m}x [/mm] - [mm] \overline{n}y [/mm] = 1$ mit [mm] $\overline{m} [/mm] = [mm] \frac{m}{(m,n)}, \overline{n} [/mm] = [mm] \frac{n}{(m,n)}$ [/mm]

Wobei nun [mm] $\overline{m}$ [/mm] und [mm] $\overline{n}$ [/mm] teilerfremd sind.

D.h. die Aufgabe hat sich reduziert auf:
Finde für teilerfremde [mm] $\overline{m},\overline{n}$ [/mm] solche [mm] $x,y\in\IN$ [/mm] mit [mm] $x\le\overline{n}, y\le \overline{m}$ [/mm] so dass [mm] $\overline{m}x [/mm] - [mm] \overline{n}y [/mm] = 1$

Und Aussagen über Teilerfremde Zahlen solltest du einige kennen… insbesondere wenn du dir die Gleichung mal "mod [mm] $\overline{n}$" [/mm] bzw "mod [mm] $\overline{m}$" [/mm] anschaust.

Hilft dir das schon?


Gruß,
Gono

Bezug
        
Bezug
ggt abschätzung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Fr 28.04.2017
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]