www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - ggT Beweis
ggT Beweis < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ggT Beweis: Idee
Status: (Frage) beantwortet Status 
Datum: 16:32 Do 05.11.2009
Autor: Blaub33r3

Aufgabe
Seien a ≥ 1 und b ≥ 0 natürliche Zahlen und k*t = ggT (a,b). Dann gilt: [mm] ggT(\bruch{a}{k},\bruch{b}{k})=t. [/mm]

Hallo Leute,

Wie funktioniert dieser wahrscheinlich sehr triviale Beweis?
Leider fallen mir auch überhaupt keine Ansätze ein...

Angenommen d sei GGT von a,b dann ist d=k*t  und ich weiss, d|a und d|b
also folgt   d|a*b  als auch d|a+b    aber was hilft mir das?

Gruß Daniel

        
Bezug
ggT Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:17 Do 05.11.2009
Autor: derdickeduke

Versuch doch mal, dir das ganze an einem Beispiel klarzumachen.

Bsp: a=24; b=36; ggT(a,b)=12=3*4 [mm] \Rightarrow [/mm] k=3;t=4
[mm] \Rightarrow ggT(\bruch{24}{3};\bruch{36}{3})=ggT(8;12)=4 [/mm]

Nach dem Prinzip würde ich auch den Beweis aufbauen.
Du hast im Grunde eine Gleichung ggT=k*t
Tipp: Fallunterscheidung hilft weiter ;-)

Bezug
                
Bezug
ggT Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:35 Fr 06.11.2009
Autor: Blaub33r3

Hey,..an einem Bsp. ist mir diese Funktionsweise dieser Aussagen auch klar, aber ich versteh nicht wie ich den Beweiß aufbauen soll, soll heißen mathematisch formulieren soll, und wo ich da eine Fallunterscheidung miteinbeziehen muss. Habt ihr vllt einen einleitenden Gedanken einer Herangehensweise?

Gruß BeeRe

Bezug
                        
Bezug
ggT Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 15:33 Fr 06.11.2009
Autor: felixf

Hallo!

> Hey,..an einem Bsp. ist mir diese Funktionsweise dieser
> Aussagen auch klar, aber ich versteh nicht wie ich den
> Beweiß aufbauen soll, soll heißen mathematisch
> formulieren soll, und wo ich da eine Fallunterscheidung
> miteinbeziehen muss. Habt ihr vllt einen einleitenden
> Gedanken einer Herangehensweise?

Nun, das haengt davon ab wie der ggT bei euch definiert ist. Normalerweise ist er (bei ganzen Zahlen) als der positive groesste gemeinsame Teiler definiert.

Du musst also zeigen:

a) $t$ ist ein gemeinsamer Teiler von [mm] $\frac{a}{k}$ [/mm] und [mm] $\frac{b}{k}$; [/mm]

c) ist $d$ ein gemeinsamer Teiler von [mm] $\frac{a}{k}$ [/mm] und [mm] $\frac{b}{k}$, [/mm] so gilt $d [mm] \mid [/mm] t$.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]