www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - ggT
ggT < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ggT: Eigenschaften
Status: (Frage) beantwortet Status 
Datum: 17:10 So 28.02.2010
Autor: Julia2009

Ich bin gerade dabei die Eigenschaften eines ggT zu beweisen.

Für zwei Eigenschaften des ggT fehlt mir jedoch eine Beweisidee:
Und zwar für die Eigenschaften:

(1) ggt(a,b)=ggt(a,b-a)
(2) d sei der ggt(a,b)->a/d und b/d sind teilerfremd

Wär super, wenn mir jemand weiterhelfen könnte!

Lg!
Julia2009

        
Bezug
ggT: Antwort
Status: (Antwort) fertig Status 
Datum: 17:39 So 28.02.2010
Autor: nooschi


> Ich bin gerade dabei die Eigenschaften eines ggT zu
> beweisen.
>  
> Für zwei Eigenschaften des ggT fehlt mir jedoch eine
> Beweisidee:
> Und zwar für die Eigenschaften:
>  
> (1) ggt(a,b)=ggt(a,b-a)

ich würde zeigen: [mm] $ggt(a,b)\le [/mm] ggt(a,b-a), [mm] ggt(a,b)\ge [/mm] ggt(a,b-a)$ aus dem folgt dann $ggt(a,b)=ggt(a,b-a)$.

Beweis [mm] $ggt(a,b)\le [/mm] ggt(a,b-a)$:
sei $x=ggt(a,b)$. das heisst [mm]x|a[/mm]. zu zeigen bleibt nur noch [mm]x|(b-a)[/mm]. Schreibe dazu [mm]a=x\cdot a^\*[/mm] und [mm]b=x\cdot b^\*[/mm]. Dabei sind [mm]a^\*, b^\*\in \IN[/mm] da [mm]x=ggt(a,b)[/mm], also [mm]x|a[/mm] und [mm]x|b[/mm]. [mm] $$\Rightarrow (b-a)=x\cdot b^\*-x\cdot a^\*=x\cdot (b^\*-a^\*) \Rightarrow [/mm] x|(b-a)$$
Beweis [mm] $ggt(a,b)\ge [/mm] ggt(a,b-a)$:
sei [mm]x=ggt(a,b-a)[/mm]. Es gilt also [mm]x|a[/mm]. zu zeigen bleibt [mm]x|b[/mm]. Schreibe wieder  [mm]a=x\cdot a^\*[/mm] und [mm]b-a=x\cdot (b^\*-a^\*^\*)[/mm]. Dabei gilt wieder [mm]a^\*\in\IN[/mm] und [mm](b^\*-a^\*^\*)\in\IN[/mm]. [mm] $$\Rightarrow [/mm] b = (b-a) + a = [mm] x\cdot (b^\*-a^\*^\*)+x\cdot a^\*=x\cdot ((b^\*-a^\*^\*)+a^\*)$$ [/mm] die Summe natürlicher Zahlen ist wieder eine natürliche Zahl, also gilt [mm]x|b[/mm].


> (2) d sei der ggt(a,b)->a/d und b/d sind teilerfremd

Angenommen es existiert [mm]x\not= 1, x\in\IN[/mm] sodass [mm]x|(a/d)[/mm] und [mm]x|(b/d)[/mm]. das ist aber das selbe wie [mm](x\cdot d)|a[/mm] und [mm](x\cdot d)|b[/mm]. Da [mm]x\not= 1[/mm], wäre [mm](x\cdot d)[/mm] eine natürliche Zahl, welche a und b teilt und grösser als d ist. Widerspruch zu [mm]d=ggt(a,b)[/mm].

> Wär super, wenn mir jemand weiterhelfen könnte!
>  
> Lg!
>  Julia2009  


Bezug
        
Bezug
ggT: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:39 Di 02.03.2010
Autor: Julia2009

Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]