www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Interpolation und Approximation" - gewichtetes skalarprodukt
gewichtetes skalarprodukt < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gewichtetes skalarprodukt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:06 Mi 12.05.2010
Autor: kunzmaniac

Aufgabe
Man berechne die Bestapproximation [mm] $g\in P_2[0,1]$ [/mm] zu der Funktion $f(x) = [mm] \wurzel{1-x}$ [/mm] bzgl. [mm] $||f||_w=\wurzel{_w}$ [/mm] mit $w(x)=1-x$ und $<f,g> = [mm] \integral_0^1{f(x)*g(x)*w(x)}dx$. [/mm] Was wäre eine naheliegende, bessere Gewichtsfunktion w zur Approximation von f?  

Hallo,

Die Bestapproximation habe ich, allerdings habe ich bei der Gewichtsfunktion Verständnisprobleme, irgendwie soll die die Approximation an den Rändern 0,1 verbessern. $1-x$ ist 1 für x = 0 und 0 für x = 1, genau wie f, also doch ganz gut. Wie finde ich eine bessere Gewichtsfunktion, was genau bewirkt ein solches w in meinem Skalarprodukt?
Ich habe mit Maple mal [mm] $\wurzel{1/4-(x-1/2)^2}$ [/mm] ausprobiert - die Näherungsfunktion kam an den Rändern etwas herunter, aber in der stelle 0 will ich das ja gar nicht...

vielen Dank für Eure Hilfe

        
Bezug
gewichtetes skalarprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 13:06 Fr 14.05.2010
Autor: ullim

Hi,

ja wirklich was Gutes ist mir auch nicht eingefallen. Man könnte allerdings die Gewichtsfunktion w(x) wie folgt etwas allgemeiner definieren durch

[mm] w(x)=(a-x)^\alpha*(b-x)^\beta [/mm] mit [mm] \alpha,\beta\in\IR [/mm] und a=0, b=1

Das deckt den angegebenen Fall ab, wähle [mm] \alpha=0 [/mm] und [mm] \beta=1 [/mm] und auch die von Dir ausprobierte Funktion mit [mm] \alpha=\bruch{1}{2} [/mm] und [mm] \beta=\bruch{1}{2} [/mm]

Jetzt kann man an den Parametern [mm] \alpha [/mm] und [mm] \beta [/mm] spielen und sich die beste Approximation raussuchen.

Aber wie gesagt, zufrieden bin ich damit eigentlich nicht, deshalb setze ich den Status auch nur auf teilweise beantwortet.

Vielleicht fällt ja jemand anderem was Gutes ein.



Bezug
        
Bezug
gewichtetes skalarprodukt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Sa 15.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]