www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - geschwindigkeit in abhängigk
geschwindigkeit in abhängigk < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

geschwindigkeit in abhängigk: gegenwind
Status: (Frage) beantwortet Status 
Datum: 23:23 Mo 25.10.2004
Autor: timotb

Hallo,
ein flugzeug fliegt mit der reisegeschw. "v" eine strecke "d"  hin und zurück. Es weht ein Wind mit der geschw. "w" genau in flugrichtung bzw. beim rückfluig in gegenrichtung.
gleicht der gewinn an flugzeit beim hinflug den verlust beim rückflug aus?
wieso gleicht eben der hinflug nicht den verlust aus?

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://f19.parsimony.net

        
Bezug
geschwindigkeit in abhängigk: weiß nicht so genau
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:35 Mo 25.10.2004
Autor: Bastiane

Hallo!
Also, eigentlich würde ich sagen, dass der Wind die Geschwindigkeiten ausgleicht - das sind doch konstante Geschwindigkeiten, oder? Dann müsste man die doch einfach addieren bzw. subtrahieren können, und dann käme am Ende dasselbe raus.
Du hast aber nicht zufällig genaue Geschwindigkeiten gegeben, oder?
Viele Grüße

:-)

Bezug
                
Bezug
geschwindigkeit in abhängigk: @bastiane
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:38 Mo 25.10.2004
Autor: timotb

ich weiß dass die antwort nein ist, der vorsprung wird nicht ausgeglichen. nur kann ich das nicht formelmäßig begründen.
die geschwindigkeiten sind konstant. es sind keine werte gegeben.
danke

Bezug
        
Bezug
geschwindigkeit in abhängigk: Antwort
Status: (Antwort) fertig Status 
Datum: 02:13 Di 26.10.2004
Autor: ladislauradu

Hallo timotb!

Es sei:
[mm]t_{1}[/mm] - dauer des Hinfluges
[mm]t_{2}[/mm] - dauer des Rückfluges
[mm]t[/mm] - dauer des Hin- und Rückfluges ohne Wind

Es gilt:

[mm](v+w)t_{1}=(v-w)t_{2}=\bruch{vt}{2}=d[/mm]
Also:
[mm]t_{1}=\bruch{d}{v+w}, \qquad t_{2}=\bruch{d}{v-w}, \qquad t=\bruch{2d}{v}[/mm]

Wir müssen [mm]t_{1}+t_{2}[/mm] mit [mm]t[/mm] vergleichen.

[mm]t_{1}+t_{2}=d*\left(\bruch{1}{v+w}+\bruch{1}{v-w}\right)=d*\bruch{2v}{v^{2}-w^{2}}[/mm]
[mm]\bruch{t}{t_{1}+t_{2}}=\bruch{\bruch{2d}{v}}{\bruch{2dv}{v^{2}-w^{2}}}=\bruch{2d}{v}*\bruch{v^{2}-w^{2}}{2dv}=\bruch{v^{2}-w^{2}}{v^{2}}=1-\bruch{w^{2}}{v^{2}}\le 1[/mm]

Also:

[mm]t\le t_{1}+t_{2}[/mm]

Ohne Wind ist die Zeit am kürzesten.

Alles klar? :-)

Schöne Grüße,
Ladis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]