www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - geordnete Basen, Isomorphismus
geordnete Basen, Isomorphismus < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

geordnete Basen, Isomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:16 So 12.02.2012
Autor: theresetom

Aufgabe
Für ein System von vektoren [mm] b_1, [/mm] ... [mm] ,b_n [/mm] eines [mm] \IK-Vektorraums [/mm] V sind äquivalent:
> Die Vektoren [mm] b_1,...,b_n [/mm] bilden eine geordnete Basis von V
> Die Abbildung [mm] \phi: \IK^n [/mm] -> V

[mm] \phi(\vektor{x_1 \\ ...\\x_n}) [/mm] := [mm] x_1 b_1+..+x_n b_n [/mm] ist ein linearer Isomorphismus.

Kann ich diese Äquivalenz irgendwie beweisen?

Ich weiß unter einer Basis eines Vektorraums verstehen
wir ein linear unabhängiges Erzeugendensystem. dh.Zu jedem v ∈ V existieren eindeutige Skalare [mm] \lambda_1,...\lambda_n [/mm] ∈ K  sodass v [mm] =\lambda_1 b_1 ...+\lambda_n b_n [/mm] schreiben

        
Bezug
geordnete Basen, Isomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 So 12.02.2012
Autor: leduart

Hallo
ja du solltest das können, wie ist denn ein Isophormismus definiert. nur das musst du zeigen.
Gruss leduart

Bezug
                
Bezug
geordnete Basen, Isomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:47 So 12.02.2012
Autor: theresetom

ah, jetzt ist mir das klar!

Ich muss

> Linearität
> Biejektivität von [mm] \phi [/mm] zeigen.

Linearität
[mm] \phi(\vektor{x_1 \\ ...\\x_n})+\phi(\vektor{y_1 \\ ...\\y_n})=x_1b_1+...+x_nb_n [/mm] + [mm] y_1b_1+....y_nb_n= (x_1+y_1)b_1+....+(x_n+y_n)b_n [/mm] = [mm] \phi(\vektor{x_1 +y_1\\ ...\\x_n+y_n}) [/mm]
[mm] \lambda \phi(\vektor{x_1 \\ ...\\x_n})= \lambda [/mm] * [mm] (x_1b_1+...+x_nb_n [/mm] ) = [mm] \lambda [/mm] * [mm] x_1b_1 [/mm] + ... [mm] \lambda *x_n b_n= \phi(\vektor{\lambda x_1 \\ ...\\\lambda x_n}) [/mm]

Injektivität:
Sei [mm] \phi(\vektor{x_1 \\ ...\\x_n})=(\vektor{y_1 \\ ...\\y_n}) [/mm]
ZZ. [mm] \vektor{x_1 \\ ...\\x_n}=\vektor{y_1 \\ ...\\y_n} [/mm]
[mm] \phi(\vektor{x_1 \\ ...\\x_n}) [/mm] = [mm] (\vektor{y_1 \\ ...\\y_n}) [/mm]
[mm] x_1b_1+...+x_nb_n =y_1b_1+....y_nb_n [/mm]
[mm] (x_1-y_1)b_1+...+(x_n-y_n)b_n=0 [/mm]
Linear unabhängig => Koeffizienten alle 0
[mm] x_1-y_1=0 [/mm]
...
[mm] x_n-y_n=0 [/mm]
<=> [mm] x_1=y_1 [/mm]
....
[mm] x_n=y_n [/mm]
[mm] <=>\vektor{x_1 \\ ...\\x_n}=\vektor{y_1 \\ ...\\y_n} [/mm]

Surjektivität:
ZZ.: sei [mm] t_1*b_1+...+t_nb_n \in [/mm] V so muss [mm] \exists \vektor{t_1 \\ ...\\t_n} \in \IK^n [/mm] so dass [mm] \phi(\vektor{t_1 \\ ...\\t_n} )=t_1*b_1+...+t_nb_n [/mm]
Sei [mm] t_1*b_1+...+t_nb_n \in [/mm] V

Wie mache ich hier weiter?

Bezug
                        
Bezug
geordnete Basen, Isomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 07:20 Mo 13.02.2012
Autor: angela.h.b.


> Surjektivität:
>  ZZ.: sei [mm]t_1*b_1+...+t_nb_n \in[/mm] V so muss [mm] [s]\exists[/s] [/mm] ein [mm] \vektor{t_1 \\ ...\\ t_n} \in \IK^n[/mm] [/mm]

existieren,

> so dass [mm]\phi(\vektor{t_1 \\ ...\\ t_n} )=t_1*b_1+...+t_nb_n[/mm]
>  
> Sei [mm]t_1*b_1+...+t_nb_n \in[/mm] V.

Es ist [mm] \phi(\vektor{t_1 \\ ...\\ t_n} )=t_1*b_1+...+t_nb_n. [/mm]

Fertig.

Ein Wörtchen wäre noch zur Wohldefiniertheit von [mm] \phi [/mm] zu verlieren.

LG Angela

>  
> Wie mache ich hier weiter?


Bezug
                                
Bezug
geordnete Basen, Isomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:27 Mo 13.02.2012
Autor: theresetom

Hallo, danke
Wie zeige ich die Wohldefiniertheit?

LG

Bezug
                                        
Bezug
geordnete Basen, Isomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 10:59 Mo 13.02.2012
Autor: fred97


> Hallo, danke
>  Wie zeige ich die Wohldefiniertheit?

Was Angela damit gemeint hat, ist mir nicht klar. Durch



$ [mm] \phi(\vektor{x_1 \\ ...\\x_n}) [/mm] $ := $ [mm] x_1 b_1+..+x_n b_n [/mm] $

wird eine einwandfreie lin. Abb. definiert.

FRED

>  
> LG


Bezug
                                                
Bezug
geordnete Basen, Isomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:12 Mo 13.02.2012
Autor: angela.h.b.


> > Hallo, danke
>  >  Wie zeige ich die Wohldefiniertheit?
>  
> Was Angela damit gemeint hat, ist mir nicht klar. Durch
>  
>
>
> [mm]\phi(\vektor{x_1 \\ ...\\ x_n})[/mm] := [mm]x_1 b_1+..+x_n b_n[/mm]
>
> wird eine einwandfreie lin. Abb. definiert.

In der Tat...
Ich hatte wohl im Geiste die Definitionsgleichung geändert.

LG Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]