www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - geometrische vert./ E(X)
geometrische vert./ E(X) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

geometrische vert./ E(X): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:03 Fr 30.05.2008
Autor: Igor1

Hallo,

ich habe eine Frage zu der folgenden Internetseite

[]wikipedia -geometrische Verteilung- Erwartungswert

Beim Punkt 2.1 des Inhaltsverzeichnisses dort (Eigenschaften - Erwartungswert) ist mir nicht klar , was
[mm] \bruch{d}{d(1-p)} [/mm] in der Herleitungsgleichung ( die zweite Teilgleichung) bedeutet ...?

Danke schön

Gruss
Igor

        
Bezug
geometrische vert./ E(X): Direkter Weg
Status: (Antwort) fertig Status 
Datum: 12:46 Sa 31.05.2008
Autor: Infinit

Hallo Igor,
mit diesem Ausdruck ist der Differentialquotient in Hinblick auf das Summenargument gemeint. Da die Erwartungswertbildung ein linearer Vorgang ist, kann man so was machen. Es ist jedoch aus meiner Sicht recht tricky, denn auf diese Idee kommt man eigentlich nur, wenn man das Ergebnis schon kennt.
Es gibt auch einen direkten Weg und die paar dazugehörigen Zeilen an Rechnung findest Du []hier.
Viele Grüße,
Infinit

Bezug
        
Bezug
geometrische vert./ E(X): Antwort
Status: (Antwort) fertig Status 
Datum: 07:08 So 01.06.2008
Autor: felixf

Hallo Igor

> ich habe eine Frage zu der folgenden Internetseite
>
> []wikipedia -geometrische Verteilung- Erwartungswert
>  
> Beim Punkt 2.1 des Inhaltsverzeichnisses dort
> (Eigenschaften - Erwartungswert) ist mir nicht klar , was
> [mm]\bruch{d}{d(1-p)}[/mm] in der Herleitungsgleichung ( die zweite
> Teilgleichung) bedeutet ...?

Das ist sozusagen die Ableitung nach der Unbestimmten $1 - p$: wenn du die Gleichung so umschreibst, dass du $1 - p$ durch $y$ ersetzt, dann steht da [mm] $\frac{d}{d y} \sum_{k=1}^\infty y^k [/mm] = [mm] \sum_{k=1}^\infty [/mm] k [mm] y^{k-1}$. [/mm]

Soweit ok?

Beim darauf folgenden Gleichheitszeichen ersetzt man die Ableitung nach $1 - p$ dann durch eine Ableitung nach $p$: das ist sozusagen die Kettenregel. Sagen wir mal du hast eine Funktion $f(y)$, und du hast $y = 1 - p$. Du weisst jetzt, dass [mm] $\frac{d}{d y}f(y) [/mm] = g(y)$ ist. Also ist [mm] $\frac{d}{d p} [/mm] f(y) = [mm] \frac{d}{d p} [/mm] f(1 - p) = f'(1 - p) (1 - p)' = -f'(1 - p)$. Wenn du das jetzt auf $f(y) = [mm] \sum_{k=1}^\infty y^k [/mm] = [mm] \sum_{k=0}^\infty y^k [/mm] - 1$ anwendest, folgt daraus genau das was da steht.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]