www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - geometrische Interpretation
geometrische Interpretation < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

geometrische Interpretation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:49 Mi 11.06.2008
Autor: Ole-Wahn

Aufgabe
Sei [mm] $A\subset \IR^n$ [/mm] kompakt, und [mm] $P=(p_1 ,...,p_{n+1})\in\IR^{n+1}$ [/mm] mit [mm] $p_{n+1}>0$. [/mm] Betrachte
[mm] $h:A\times[0,1]\rightarrow \IR^{n+1} [/mm] , [mm] (a,t)\mapsto [/mm] t a' + (1-t)p$
wobei [mm] $a=(a_1 [/mm] ,..., [mm] a_n)\in [/mm] A$ und [mm] $a'=(a_1,...,a_n,0)\in \IR^{n+1}$. [/mm]

Berechne [mm] $\lambda^{n+1}(h(A\times[0,1])$! [/mm]

Hallo,

hat jemand eine Idee, wie die Menge [mm] $h(A\times[0,1])$ [/mm] zu interpretieren ist? Irgendwie kann ich mir keine rechte Vorstellung von ihr machen. Ohne die kann ich das Maß doch gar nicht ausrechnen, oder?

Danke,

Ole

        
Bezug
geometrische Interpretation: Antwort
Status: (Antwort) fertig Status 
Datum: 16:59 Mi 11.06.2008
Autor: Blech

Du hast einen Punkt a im [mm] $\IR^n$, [/mm] daraus machst Du einen Punkt a' im [mm] $\IR^{n+1}$, [/mm] indem Du die hinzugefügte letzte Koordinate gleich 0 setzt (Bsp.: n=1; a=3, a' ist dann in einem Koordinatensystem ein Punkt auf der x-Achse bei x=3, y=0). h(a,t) ist eine Konvexkombination von diesem a' und einem festen Punkt p, also die Strecke zwischen den beiden. (Bsp: p=(0,1), a=1, t=0.5; a'=(1,0), h(a,t)=0.5*(1,0)+0.5*(0,1)=(0.5,0.5)).


Was ist dann die Menge aller dieser Strecken von Punkten in A nach p (Bsp.: A=[0;1])?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]