www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - geo in der euklidischen Ebene
geo in der euklidischen Ebene < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

geo in der euklidischen Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:26 Di 07.03.2006
Autor: hurdel

Aufgabe
a) Beschreibe eine nicht durch Null gehende Gerade in Polarkoordinaten.
b) Ein Parallelogramm mit den Seitenlängen 50 und 41 habe eine Diagonale der Länge 89. Man berechne die Länge der zweiten Diagonalen und den Flächeninhalt.
c) Sind [mm] \alpha [/mm] , [mm] \beta ,\gamma \in \IR [/mm] mit [mm] 0<\alpha [/mm] , [mm] \beta [/mm] , [mm] \gamma [/mm] < [mm] \pi [/mm] und [mm] \alpha [/mm] + [mm] \beta +\gamma [/mm] = [mm] \pi, [/mm] so gibt es ein Dreieck mit den Winkeln [mm] \alpha ,\beta [/mm] , [mm] \gamma [/mm]
d) Es gibt kein gleichseitiges Dreieck mit Eckpunkten in [mm] \IZ [/mm] hoch 2

bitte um schnelle hilfe- bin absolut verzweifelt. brauche die aufgabe für eine wichtige prüfung...
zur hilfe: (Polarkoordinaten) : Zu 0 [mm] \not= [/mm] x gibt es ein eindeutig bestimmtes "vi" mit
     x= |x| * e ("vi"), 0 [mm] \le [/mm] "vi" < 2 [mm] \pi [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
geo in der euklidischen Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:04 Di 07.03.2006
Autor: Tyr7

Hallo,

stimmt *peinlichist*...

Das geht ja nur bei rechtwinkligen Dreiecken.  Weiss jetzt nicht, wo ich da einen gesehen habe oder welche Aufgabe ich im Kopf hatte...
Sorry für die Verwirrung, war ja alles quatsch.

Viele Grüße
Tyr

Bezug
                
Bezug
geo in der euklidischen Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:07 Di 07.03.2006
Autor: hurdel

hallo tyr 7. vielen danke für deine tips. aber ich glaube, da ist dir ein fehler unterlaufen. du rechnest mit dem sinus usw, obwohl doch gar kein rechter winkel vorliegen muss in diesem Dreieck. oder irre ich mich da jetzt?

Bezug
        
Bezug
geo in der euklidischen Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 Di 07.03.2006
Autor: Tyr7

Hallo nochmal,

zu Aufgabe c fällt mir ein:

Drei Winkel, die alle größer 0 sind und kleiner als Pi.

Die Summe der drein Winkel ist = Pi. Pi ist die Art, die Grade in RAD darzustellen. Eine Umnrechnungsformel:
Winkel in Grad = 180/Pi *Winkel in Rad.

Also ist die Summe der Winkel in Grad = 180.

Damit haben alle Winkel einen Grad zwischen 0 < w < 180.
So wäre das für mich fertig.

Viele Grüße
Tyr

Bezug
        
Bezug
geo in der euklidischen Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 14:53 Di 07.03.2006
Autor: riwe

zu b) das geht ganz einfach mit pythagoras, dazu zeichnest du die höhe y von C aus,  der schnittpunkt mit der grundlinie sei H, und die strecke BH = x: dann hast du: [mm] 89^{2}=(50+x)^{2}+y^{2} [/mm] und [mm] 41^{2}=x^{2}+y^{2}, [/mm] die 2. von der ersten gl. subtrahiert und ausmultiplizert, liefert x = 37.4 und y = 16.8. mit [mm] f^{2}=(50-x)^{2}+y^{2} [/mm] bekommst du f = 21 und A = 840.
werner

Bezug
        
Bezug
geo in der euklidischen Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 10:47 So 26.03.2006
Autor: DaMenge

Hi,

also zu b und c wurde ja schon was geschrieben
(obwohl ich das bei c) konstruktiv machen würde : also tatsächlich ein Dreieck damit konstruieren) - frag hier also nach, wenn du fragen hast.

zur a) setzt doch mal eine allgemeine Gerade an :
[mm] $g(x)=\vektor{a\\b}+x*{s\\t}=\vektor{a+x*s\\b+x*t}$ [/mm]

diesen letzten allgemeinen Vektor musst du nun in Polarkoordinaten überführen - überlege dazu, wie die Länge aussieht und wie der Winkel zum ersten einheitsvektor zu berechnen ist - dies sind deine beiden Komponenten in Polarkoordinaten...

bei d) hätte ich auch nur Ansätze, keine direkte Lösung..
(muss mal weiter überlegen)

viele Grüße
DaMenge

Bezug
        
Bezug
geo in der euklidischen Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 14:05 Di 28.03.2006
Autor: M.Rex

Zu Aufgabenteil d)

Was kann den "schlimmstenfalls" passieren. Nun, dass beide Eckpunkte der Grundseite auf ganzzahligen Koordinaten liegen. Dann kann man mit Hilfe des Satzes von Phythagoras die Höhe des Dreiecks berechnen.
Nennen wir die Seitenlänge a, so ergibt sich für die Höhe h = [mm] \wurzel{1,25 a²} [/mm] .  Der dritte Punkt hat also den Abstand h zur Grundseite, und das h nicht ganzzahlig ist, müsste eigentlich klar sein.

Ansonsten musst du h zu [mm] \wurzel{5} [/mm] *0,5a  vereinfachen und zeigen, dass  [mm] \wurzel{5} [/mm] nicht ganzzahlig ist.


Ich hoffe, das löst dein Problem.

Marius (M.Rex)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]