www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - gemeinsamer eigenvektor
gemeinsamer eigenvektor < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gemeinsamer eigenvektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:40 Mi 26.10.2011
Autor: valoo

Aufgabe
Seien K ein algebraisch abgeschlossener Körper und [mm] M_{1},...M_{n} [/mm] paarweise kommutierende $ [mm] m\times [/mm] m - Matrizen $ über K.
Setze [mm] I:=\{f\in K[x_{1},...,x_{n}]| f(M_{1},...,M_{n})=0 \} [/mm]
Nach dem Nullstellensatz existieren [mm] \lambda_{1},..., \lambda_{n}\in [/mm] K mit [mm] f(\lambda_{1},..., \lambda_{n})=0 \forall f\in [/mm] I
Behauptung: Es gibt einen gemeinsamen Eigenvekor v ungleich 0 der [mm] M_{i}, [/mm] sodass [mm] \lambda_{i}*v=M_{i}*v [/mm]

Hallo!
Die angegebene Behauptung ist zu beweisen oder zu widerlegen...wäre sie nicht wahr, so ließe sich sicherlich irgendwie ein Gegenbeispiel finden, für den einfachsten Fall, also m=1 stimmt die Behauptung jedenfalls. Aber mir ist irgendwie noch nicht einmal klar, warum [mm] \lambda_{i} [/mm] überhaupt ein Eigenwert von [mm] M_{i} [/mm] ist...Mmmh

        
Bezug
gemeinsamer eigenvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 13:05 Mi 26.10.2011
Autor: felixf

Moin,

> Seien K ein algebraisch abgeschlossener Körper und
> [mm]M_{1},...M_{n}[/mm] paarweise kommutierende [mm]m\times m - Matrizen[/mm]
> über K.
>  Setze [mm]I:=\{f\in K[x_{1},...,x_{n}]| f(M_{1},...,M_{n})=0 \}[/mm]
>  
> Nach dem Nullstellensatz existieren [mm]\lambda_{1},..., \lambda_{n}\in[/mm]
> K mit [mm]f(\lambda_{1},..., \lambda_{n})=0 \forall f\in[/mm] I
>  Behauptung: Es gibt einen gemeinsamen Eigenvekor v
> ungleich 0 der [mm]M_{i},[/mm] sodass [mm]\lambda_{i}*v=M_{i}*v[/mm]
>  Hallo!
>  Die angegebene Behauptung ist zu beweisen oder zu
> widerlegen...wäre sie nicht wahr, so ließe sich
> sicherlich irgendwie ein Gegenbeispiel finden, für den
> einfachsten Fall, also m=1 stimmt die Behauptung
> jedenfalls. Aber mir ist irgendwie noch nicht einmal klar,
> warum [mm]\lambda_{i}[/mm] überhaupt ein Eigenwert von [mm]M_{i}[/mm]
> ist...Mmmh

zu letzterem ein Tipp: das charakteristische Polynom von [mm] $M_i$ [/mm] ist (aufgefasst als Polynom in der Unbestimmten [mm] $x_i$) [/mm] ein Element von $I$.

LG Felix


Bezug
                
Bezug
gemeinsamer eigenvektor: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:20 Mo 31.10.2011
Autor: valoo

Mmh und wie beweise ich das nun?
Meine Idee wäre eine Induktion, wenn das denn klappt und das stimmt wie ich das annehme...

Sei [mm] I(n):=\{f\in K[X_{1},...,X_{n}]|f(M_{1},...,M_{n})=0\} [/mm]
Dann ist [mm] I(n)\subset [/mm] I(n+1)
Nach dem NS gibt es [mm] \lambda_{i} [/mm] mit [mm] f(\lambda_{1},...,\lambda_{n+1})=0 [/mm] für alle [mm] f\in [/mm] I(n+1)
also insbesondere [mm] f(\lambda_{1},...,\lambda_{n})=0 [/mm] für alle [mm] f\in [/mm] I(n)
Nach IV gibt es einen EV v mit [mm] M_{i}*v=\lambda_{i}*v [/mm] für alle [mm] i\not=n+1 [/mm]
Kann man jetzt irgendwie [mm] M_{n+1} [/mm] in Abhängigkeit der anderen Matrizen darstellen und so argumentieren, dass v auch EV von [mm] M_{n+1} [/mm] ist? Oder muss es das garnicht sein und es kann einen völlig anderen gemeinsamen EV geben?


Bezug
                        
Bezug
gemeinsamer eigenvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 Mo 31.10.2011
Autor: felixf

Moin!

> Mmh und wie beweise ich das nun?
> Meine Idee wäre eine Induktion, wenn das denn klappt und
> das stimmt wie ich das annehme...
>  
> Sei [mm]I(n):=\{f\in K[X_{1},...,X_{n}]|f(M_{1},...,M_{n})=0\}[/mm]
>  
> Dann ist [mm]I(n)\subset[/mm] I(n+1)
> Nach dem NS gibt es [mm]\lambda_{i}[/mm] mit
> [mm]f(\lambda_{1},...,\lambda_{n+1})=0[/mm] für alle [mm]f\in[/mm] I(n+1)
>  also insbesondere [mm]f(\lambda_{1},...,\lambda_{n})=0[/mm] für
> alle [mm]f\in[/mm] I(n)
>  Nach IV gibt es einen EV v mit [mm]M_{i}*v=\lambda_{i}*v[/mm] für
> alle [mm]i\not=n+1[/mm]

Insbesondere ist dann $W := [mm] \bigcap_{i=1}^n Eig(M_i, \lambda_i) \neq \{ 0 \}$. [/mm] Ich vermute, das man hiermit arbeiten muss...

>  Kann man jetzt irgendwie [mm]M_{n+1}[/mm] in Abhängigkeit der
> anderen Matrizen darstellen und so argumentieren, dass v
> auch EV von [mm]M_{n+1}[/mm] ist? Oder muss es das garnicht sein und
> es kann einen völlig anderen gemeinsamen EV geben?

Es kann sein, dass $v$ kein EV von [mm] $M_{n+1}$ [/mm] ist. Allerdings muss es irgendein $v [mm] \in [/mm] W [mm] \setminus \{ 0 \}$ [/mm] geben mit [mm] $M_{n+1} [/mm] v = [mm] \lambda_{n+1} [/mm] v$. Oder anders gesagt: $W [mm] \cap Eig(M_{n+1}, \lambda_{n+1}) \neq \{ 0 \}$. [/mm]

Wie man das jetzt aber hinbekommt weiss ich gerade auch nicht... Vielleicht kann man mit der Annahme $W [mm] \cap Eig(M_{n+1}, \lambda_{n+1})$ [/mm] ein Polynom in $I$ konstruieren, welches nicht [mm] $(\lambda_1, \dots, \lambda_{n+1})$ [/mm] als gemeinsame Nullstelle hat?

LG Felix


Bezug
                        
Bezug
gemeinsamer eigenvektor: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:23 Do 03.11.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]