www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - gemeinsame Verteilung
gemeinsame Verteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gemeinsame Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:12 Di 31.05.2016
Autor: Kirby22

Aufgabe
Die Zufallsvariable $X$ sei gleichverteilt auf [mm] $\{1,2\}$ [/mm] und $Y$ sei die Anzahl der Kopf-Würfe bei $X$ fairen Münzwürfen. (d.h. die Anzahl der Münzwürfe ist zufällig!)

(a) Bestimmen Sie die gemeinsame Verteilung von $X$ und $Y$

(b) Bestimmen Sie die Verteilung von $Y$, den Erwartungswert $E(Y)$ und die Varianz $V(Y)$

(c) Prüfen Sie, ob $X$ und $Y$ unabhängig sind




Theoretisch ist das ja keine besonders schwierige Aufgabe, aber irgendwie habe ich Probleme diese korrekt zu Modellieren.

Wir haben ja [mm] $\Omega:=\{K,Z\}$ [/mm] wobei K:=Kopf; Z:=Zahl.

Dann ist [mm] $X:\Omega \to \{1,2\}$ [/mm] . Nun hat aber $X$ ja theortisch nix mit meiner Menge [mm] $\Omega$ [/mm] zu tun, da $X$ ja nur die Anzahl der Würfe zählt.

$Y$ hingegen ist hat schon etwas mit [mm] $\Omega$ [/mm] zu tun. [mm] $Y:\Omega \to \{0,1,2\}$ [/mm] mit

[mm] $Y_{i}=\begin{cases} 1 & \mbox{falls }\omega_{i}=K\\ 0 & \mbox{falls }\omega_{i}=Z \end{cases}$ [/mm]

und

[mm] $Y:=\sum_{i=1}^x Y_i$ [/mm] mit [mm] $x\in [/mm] W(X)$.


Wie kann man hier konkret sein Omega und seine Zufallsvariablen definieren, sodass das ganze sinn macht?


Zu (a) habe ich folgendes:

$P(X=1,Y=0) = [mm] \frac{1}{4}$ [/mm]

$P(X=1,Y=1) = [mm] \frac{1}{4}$ [/mm]

$P(X=1,Y=2) = 0$

$P(X=2,Y=0) = [mm] \frac{1}{8}$ [/mm]

$P(X=2,Y=1) = [mm] \frac{1}{4}$ [/mm]

$P(X=2,Y=2) = [mm] \frac{1}{8}$ [/mm]

In einer Tabelle ist das ganze übersichtlicher, aber das hab ich hier nicht hinbekommen.


(b)

[mm] P\left(Y=k\right)=\begin{cases} \frac{3}{8} & \mbox{falls }k=0\\ \frac{2}{4} & \mbox{falls }k=1\\ \frac{1}{8} & \mbox{falls }k=2 \end{cases} [/mm]




[mm] E\left(Y\right)=0\cdot\frac{3}{8}+1\cdot\frac{2}{4}+2\cdot\frac{1}{8}=\frac{3}{4} [/mm]


[mm] V\left(Y\right) = E\left(\left(Y-E\left(Y\right)\right)^{2}\right) [/mm]
[mm] \, = \left(0-\frac{3}{4}\right)^{2}\cdot\frac{3}{8}+\left(1-\frac{3}{4}\right)^{2}\cdot\frac{2}{4}+\left(2-\frac{3}{4}\right)^{2}\cdot\frac{1}{8} [/mm]
[mm] \, = \frac{7}{16} [/mm]



(c) $X$ und $Y$ sind nicht unabhängig, da

[mm] $P(X=1,Y=0)=\frac{1}{4} \not= \frac{1}{2} \cdot \frac{3}{8 } [/mm] = [mm] \frac{3}{16} [/mm] = [mm] P(X=1)\cdot [/mm] P(Y=0).


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
gemeinsame Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:52 Di 31.05.2016
Autor: luis52

Moin Kirby22,

[willkommenmr]

Wenn ich dich recht verstehe geht es dir um die Festlegung eines geeigneten Wahrscheinlichkeitsraumes [mm] $(\Omega,\mathfrak{A},P)$, [/mm] so dass [mm] $(X,Y):\Omega\to\IR^2$ [/mm] ein Zufallsvektor ist mit den von dir berechneten Wahrscheinlichkeiten $P(X=x,Y=y)$.

Wenn nach der gemeinsamen Verteilung eines Zufallsvektors gefragt wird, bleibt der W-Raum meist im Hintergrund und man begnuegt sich mit der Angabe der besagten Wahrscheinlichkeiten $P(X=x,Y=y)$. Wenn du aber unbedingt willst, so waehle [mm] $\Omega=\{(K,a),(Z,a),(K,b),(Z,b)(K,c),(Z,c)\}$ [/mm] und [mm] $\mathfrak{A}=\mathfrak{P}(\Omega)$. [/mm]
Ferner sei


$ [mm] P(\{(K,a)\}) [/mm] = [mm] \frac{1}{4} [/mm] $
[mm] $P(\{(K,b)\})=\frac{1}{4} [/mm] $
[mm] $P(\{(K,c)\})=0 [/mm] $
$ [mm] P(\{(Z,a)\}) [/mm] = [mm] \frac{1}{8} [/mm] $
[mm] $P(\{(Z,b)\})=\frac{1}{4} [/mm] $
[mm] $P(\{(Z,c)\})=\frac{1}{8} [/mm] $

Auf diese Weise ist ein Wahrscheinlichkeitsmass [mm] $P:\mathfrak{A}\to[0,1]$ [/mm] festgelegt. Dann besitzt [mm] $(X,Y):\Omega\to\IR^2$ [/mm]  mit $ (X,Y)(K,a)=(1,0) $ , $(X,Y)(K,b) = (1,1) $ , $(X,Y)(K,c) = (1,2) $ , $ (X,Y)(Z,a)=(2,0) $ , $(X,Y)(Z,b) = (2,1) $ , $(X,Y)(Z,c) = (2,2) $   die von dir angegebene  Verteilung.



Bezug
                
Bezug
gemeinsame Verteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:27 Mi 01.06.2016
Autor: Kirby22

Hi, vielen dank genau das hab ich gemeint.

Mfg. Kirby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]