www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - gebrochenrationale funktio
gebrochenrationale funktio < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gebrochenrationale funktio: definitionsmenge und nullstell
Status: (Frage) beantwortet Status 
Datum: 21:03 So 21.01.2007
Autor: a-l18

Aufgabe
bestimmen die von folgenden gebr.rat. funktionen f die (max.) definitionsmengen D und nullstellen N.
a) f(x)= [mm] \bruch{3x^3+12x^2+12x}{5x+10} [/mm]
b) f(x)= [mm] \bruch{x^2+\wurzel{3}x-\wurzel{2}x-\wurzel{6}}{x^2-2} [/mm]
d) f(x)= [mm] \bruch{x^4+3x^3}{x^4-18x^2+81} [/mm]

hallo,
a) D= alle reelen zahlen außer 2
    N= (0/0)
stimmt das?
b) D= alle reellen zahlen außer [mm] \wurzel{2} [/mm] und [mm] -\wurzel{2} [/mm]
    N= ??
    ich weiß dass ich dazu den zähler gleich 0 setzen muss. aber wie rechne ich das x dann aus?
d) auch hier weiß ich nicht wie ich x ausrechnen muss. für D muss ich den nenner gleich 0 setzen und für N den zähler. aber wie löse ich das dann auf?


        
Bezug
gebrochenrationale funktio: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 So 21.01.2007
Autor: XPatrickX


> bestimmen die von folgenden gebr.rat. funktionen f die
> (max.) definitionsmengen D und nullstellen N.
>  a) f(x)= [mm]\bruch{3x^3+12x^2+12x}{5x+10}[/mm]
>  b) f(x)=
> [mm]\bruch{x^2+\wurzel{3}x-\wurzel{2}x-\wurzel{6}}{x^2-2}[/mm]
>  d) f(x)= [mm]\bruch{x^4+3x^3}{x^4-18x^2+81}[/mm]


>  hallo,

Hallo :-)

>  a) D= alle reelen zahlen außer 2

D = R \ {-2} ich denke das war nur ein Flüchtigkeitsfehler.

>      N= (0/0)
>  stimmt das?

(0/0) ist eine Nullstelle, allerdings gibt es auch noch andere.

[mm] 3x^3+12x^2+12x [/mm] = 0 // x ausklammern
[mm] x(3x^2+12x+12) [/mm] = 0

Nun musst du den Teil in der Klammer noch ausrechnen. Das ist eine quadratische Gleichung, die du mit der pq-Formel lösen kannst.


>  b) D= alle reellen zahlen außer [mm]\wurzel{2}[/mm] und
> [mm]-\wurzel{2}[/mm]

Richtig!

>      N= ??
>      ich weiß dass ich dazu den zähler gleich 0 setzen
> muss. aber wie rechne ich das x dann aus?

Wieder mit der pq-Formel. Lass dich von den Wurzeln nicht verwirren.
[mm] x^2+\wurzel{3}x-\wurzel{2}x-\wurzel{6} [/mm] = 0
[mm] x^2+(\wurzel{3}-\wurzel{2})x-\wurzel{6} [/mm] = 0

mit p = [mm] \wurzel{3}-\wurzel{2} [/mm] und q [mm] =-\wurzel{6} [/mm]

>  d) auch hier weiß ich nicht wie ich x ausrechnen muss. für
> D muss ich den nenner gleich 0 setzen und für N den zähler.
> aber wie löse ich das dann auf?
>  

Zähler: Klammere [mm] x^3 [/mm] aus.
Nenner: Substituiere [mm] x^2 [/mm] = z und dann wiederum mit der pq-Formel die quadratische Gleichung lösen.

Ich hoffe du kommst damit erstmal ein bisschen weiter, ansonsten melde dich einfach nochmal. Gruß Patrick

Bezug
                
Bezug
gebrochenrationale funktio: ergebnisse
Status: (Frage) beantwortet Status 
Datum: 21:38 So 21.01.2007
Autor: a-l18

vielen dank für die hilfe!
a) die zweite N=(-2/0)
b) N=(1,8/0)    N=(-2,3/0)
d) D= R [mm] \{9} [/mm]    N=(0/0)   N=(-3/0)

stimmen meine ergebnisse?

Bezug
                        
Bezug
gebrochenrationale funktio: Antwort
Status: (Antwort) fertig Status 
Datum: 22:23 So 21.01.2007
Autor: M.Rex

Hallo

> vielen dank für die hilfe!
>  a) die zweite N=(-2/0)

Fast, es gilt:

[mm] \bruch{3x³+12x²+12x}{5x+10} [/mm]
[mm] =\bruch{3x(x²+4x+4}{5x+10} [/mm]
[mm] =\bruch{3x(x+2)²}{5(x+2)} [/mm]
[mm] \underbrace{=}_{x\ne-2}\bruch{3x(x-2)}{5} [/mm]

Also sind die Nullstellen -2 und 0, und -2 ist gleichzeitig eine hebbare Definitionslücke.

>  b) N=(1,8/0)    N=(-2,3/0)

Sieht gut aus

>  d) D= R [mm]\{9}[/mm]    N=(0/0)   N=(-3/0)
>  

Passt  [mm] D=\IR/\{9\} [/mm]

> stimmen meine ergebnisse?

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]