www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - gebrochen rationale
gebrochen rationale < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gebrochen rationale: wendepunkt
Status: (Frage) beantwortet Status 
Datum: 09:23 Do 17.09.2009
Autor: itil

Aufgabe
f(x) = [mm] \bruch{x^3}{x^2-16} [/mm]

1) Polstellen:

[mm] x^2 [/mm] - 16 = 0
[mm] x^2 [/mm] = 16

x1 = +4
x2 = -4
______________________________________

Lücken:

f(4) = [mm] \bruch{4^3}{4^2-16} [/mm] = [mm] \bruch{64}{0} [/mm] = keine Lücke

f(-4) = [mm] \bruch{-4^3}{-4^2-16} [/mm] = [mm] \bruch{-64}{0} [/mm] = keine Lücke

______________________________________

Asymtote: Z>N --> Polynomdivision

[mm] (x^3+0x^2+0x+0):(x^2-16)=x [/mm] -16

______________________________________

Nullstellen:


f(x) = [mm] \bruch{x^3}{x^2-16} [/mm] = 0

[mm] x^3 [/mm] = 0
x1 = 0
x2 = 0
x3 = 0
______________________________________

Extremwerte: f'(x) = 0

f(x) = [mm] \bruch{x^3}{x^2-16} [/mm]

f'(x) = u/v = [mm] \bruch{u'v - uv'}{v²} [/mm]
= [mm] \bruch{3x^2 * (x^2-16) - ((x^3)(2x))}{(x^2-16)²} [/mm]

= [mm] \bruch{3x^4 -48x^2 - 2x^4}{(x^2-16)²} [/mm]

= [mm] \bruch{x^4 - 48x^2 }{(x^2-16)²} [/mm]

[mm] \bruch{x^4 - 48x^2 }{(x^2-16)²} [/mm] = 0

[mm] x^4 [/mm] - [mm] 48x^2 [/mm] = 0

E1 = 0
E2 = 0
E3 = -48
E4 = 48

f(x) = [mm] \bruch{x^3}{x^2-16} [/mm]
f(48) = 48,33566
f(-48) = 47,6689
__________________________________________

Wendepunkt: f''(x) = 0

f'(x) = [mm] \bruch{x^4 - 48x^2 }{(x^2-16)²} [/mm]

f''(x) = [mm] [(4x^3-96x )*(x^4-32x^2+16)]-[(x^4 [/mm] - [mm] 48x^2 [/mm] ) * [mm] 2*(x^2-16) [/mm] *2x)]

[mm] [4x^7 [/mm] - [mm] 128x^5 [/mm] + [mm] 64x^3 -96x^4 [/mm] + [mm] 3072x^3 [/mm] + 1536x] - [ [mm] (2x^4 [/mm] - [mm] 96x^2)*(2x^3 [/mm] - 32x)]

[mm] [4x^7 [/mm] - [mm] 128x^5 [/mm] + [mm] 64x^3 -96x^4 [/mm] + [mm] 3072x^3 [/mm] + 1536x] - [mm] [4x^7 [/mm] - [mm] 64x^5 [/mm] - [mm] 192x^5 [/mm] + [mm] 3072x^3] [/mm]

[mm] 4x^7 [/mm] - [mm] 128x^5 [/mm] + [mm] 64x^3 -96x^4 [/mm] + [mm] 3072x^3 [/mm] + 1536x - [mm] 4x^7 [/mm] + [mm] 64x^5 [/mm] + [mm] 192x^5 [/mm] - [mm] 3072x^3 [/mm]


f''(x) = [mm] \bruch{+ 128x^5 -96x^4 + 64x^3 + 1536x}{[(x^2-16)²]²} [/mm]


[mm] \bruch{+ 128x^5 -96x^4 + 64x^3 + 1536x}{[(x^2-16)²]²} [/mm] = 0

+ [mm] 128x^5 -96x^4 [/mm] + [mm] 64x^3 [/mm] + 1536x = 0

Raten: 0
Rest im unreellen Zahlenbereich.

einsetzen:

f(0) = 0
________________________________________

Wendetangente

y = kx + d
0 = 0k + d
k = 0
d = 0

keine Wendetangente
________________________________________


korrekt?





        
Bezug
gebrochen rationale: Antwort
Status: (Antwort) fertig Status 
Datum: 09:35 Do 17.09.2009
Autor: fred97


> f(x) = [mm]\bruch{x^3}{x^2-16}[/mm]
>  1) Polstellen:
>  
> [mm]x^2[/mm] - 16 = 0
> [mm]x^2[/mm] = 16
>  
> x1 = +4
>  x2 = -4

Korrekt !



>  ______________________________________
>  
> Lücken:
>  
> f(4) = [mm]\bruch{4^3}{4^2-16}[/mm] = [mm]\bruch{64}{0}[/mm] = keine Lücke

Das ist Unfug ! 4 ist doch Polstelle ! Du teilst durch 0 ?!



>  
> f(-4) = [mm]\bruch{-4^3}{-4^2-16}[/mm] = [mm]\bruch{-64}{0}[/mm] = keine
> Lücke

Wie oben: Unfug.



>  
> ______________________________________
>  
> Asymtote: Z>N --> Polynomdivision
>  
> [mm](x^3+0x^2+0x+0):(x^2-16)=x[/mm] -16


Das ist falsch !  Richtig:

             [mm]\bruch{x^3}{x^2-16}[/mm]= [mm] $x+\bruch{16x}{x^2-16}$ [/mm]



>  
> ______________________________________
>  
> Nullstellen:
>  
>
> f(x) = [mm]\bruch{x^3}{x^2-16}[/mm] = 0
>  
> [mm]x^3[/mm] = 0
>  x1 = 0
>  x2 = 0
>  x3 = 0


Korrekt


>  ______________________________________
>  
> Extremwerte: f'(x) = 0
>  
> f(x) = [mm]\bruch{x^3}{x^2-16}[/mm]
>  
> f'(x) = u/v = [mm]\bruch{u'v - uv'}{v²}[/mm]

Im Quelltext hast Du es richtig:

f'(x) = u/v = [mm]\bruch{u'v - uv'}{v^2}[/mm]





>  = [mm]\bruch{3x^2 * (x^2-16) - ((x^3)(2x))}{(x^2-16)²}[/mm]

Ebenso:

= [mm]\bruch{3x^2 * (x^2-16) - ((x^3)(2x))}{(x^2-16)^2}[/mm]

>  
> = [mm]\bruch{3x^4 -48x^2 - 2x^4}{(x^2-16)²}[/mm]
>  
> = [mm]\bruch{x^4 - 48x^2 }{(x^2-16)²}[/mm]
>  
> [mm]\bruch{x^4 - 48x^2 }{(x^2-16)²}[/mm] = 0

Nochmal:


[mm]\bruch{x^4 - 48x^2 }{(x^2-16)^2}[/mm] = 0

>  
> [mm]x^4[/mm] - [mm]48x^2[/mm] = 0
>  
> E1 = 0
>  E2 = 0

Korrekt


>  E3 = -48
>  E4 = 48


Nein: [mm] E_3 [/mm] = [mm] \wurzel{48} [/mm]
           [mm] E_4 [/mm] = [mm] -\wurzel{48} [/mm]

>  
> f(x) = [mm]\bruch{x^3}{x^2-16}[/mm]
>  f(48) = 48,33566
>  f(-48) = 47,6689

Siehe oben




FRED




>  __________________________________________
>  
> Wendepunkt: f''(x) = 0
>  
> f'(x) = [mm]\bruch{x^4 - 48x^2 }{(x^2-16)²}[/mm]
>  
> f''(x) = [mm][(4x^3-96x )*(x^4-32x^2+16)]-[(x^4[/mm] - [mm]48x^2[/mm] ) *
> [mm]2*(x^2-16)[/mm] *2x)]
>  
> [mm][4x^7[/mm] - [mm]128x^5[/mm] + [mm]64x^3 -96x^4[/mm] + [mm]3072x^3[/mm] + 1536x] - [ [mm](2x^4[/mm]
> - [mm]96x^2)*(2x^3[/mm] - 32x)]
>  
> [mm][4x^7[/mm] - [mm]128x^5[/mm] + [mm]64x^3 -96x^4[/mm] + [mm]3072x^3[/mm] + 1536x] - [mm][4x^7[/mm] -
> [mm]64x^5[/mm] - [mm]192x^5[/mm] + [mm]3072x^3][/mm]
>  
> [mm]4x^7[/mm] - [mm]128x^5[/mm] + [mm]64x^3 -96x^4[/mm] + [mm]3072x^3[/mm] + 1536x - [mm]4x^7[/mm] +
> [mm]64x^5[/mm] + [mm]192x^5[/mm] - [mm]3072x^3[/mm]
>  
>
> f''(x) = [mm]\bruch{+ 128x^5 -96x^4 + 64x^3 + 1536x}{[(x^2-16)²]²}[/mm]
>  
>
> [mm]\bruch{+ 128x^5 -96x^4 + 64x^3 + 1536x}{[(x^2-16)²]²}[/mm] =
> 0
>  
> + [mm]128x^5 -96x^4[/mm] + [mm]64x^3[/mm] + 1536x = 0
>  
> Raten: 0
> Rest im unreellen Zahlenbereich.
>  
> einsetzen:
>  
> f(0) = 0
>  ________________________________________
>  
> Wendetangente
>
> y = kx + d
>  0 = 0k + d
>  k = 0
>  d = 0
>  
> keine Wendetangente
>  ________________________________________
>  
>
> korrekt?
>  
>
>
>  


Bezug
                
Bezug
gebrochen rationale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:02 Do 17.09.2009
Autor: itil

stimmt mein wendepunkt? das wollte ich eigentlich wissen :-)
vielen dank für den rest!

Bezug
                        
Bezug
gebrochen rationale: Antwort
Status: (Antwort) fertig Status 
Datum: 10:28 Do 17.09.2009
Autor: M.Rex

Hallo

Die Notwendige Bedingung für den Wendepunkt f''(0)=0 ist erfüllt, aber du hast die hinreichende Bedingung nicht "abgeklopft". Hättest du das getan, hättest du auch festgestellt dass 0 eine Sattelstelle ist.

Herauszufinden, was das dann für Auswirkungen auf die Satteltangente hat, überlasse ich dann dir.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]