www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - ganze ringerweiterung
ganze ringerweiterung < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ganze ringerweiterung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:02 Sa 11.08.2012
Autor: Schadowmaster

Aufgabe
Sei $R [mm] \subseteq [/mm] K$ eine ganze Ringerweiterung und $K$ ein Körper.
Unter welchen Bedingungen an $R$ kann man folgern, dass auch $R$ ein Körper ist?

(Hierbei steht "Ring" immer für kommutativen Ring mit $1 [mm] \neq [/mm] 0$)

moin,

Ich arbeite gerade an einem Seminarvortrag über ganze Ringerweiterungen und dabei ist mir obige Frage untergekommen.
Aus der Tatsache, dass $R$ ein Unterring von $K$ ist kann man folgern, dass $R$ ein Integritätsbereich ist.
Somit kann man $Q := Quot(R)$ bilden und da dies der kleinste Körper ist, der $R$ umfasst, muss $R [mm] \subseteq [/mm] Q [mm] \subseteq [/mm] K$ gelten. (soweit richtig?)
Ist nun $R$ ganz abgeschlossen (in $Q$) so folgt aus der Ganzheit bereits $R=Q$, denn ist $K [mm] \supseteq [/mm] Q$ ganz über $R$ dann ja erst recht $Q$.

Nun bleibt aber leider die Frage: Was ist, wenn $R$ nicht ganz abgeschlossen ist?
Ich weiß bereits, dass alle faktoriellen Ringe ganz abgeschlossen sind und da ich leider bisher eher wenig Integritätsbereiche kenne, die nicht faktoriell sind, fällt es mir schwer überhaupt einen nicht ganz abgeschlossenen Ring zu finden, geschweige denn einen der als Gegenbeispiel für obige Aufgabe funktionieren würde.

Also: Gilt die Aussage für alle Integritätsbereiche $R$?
Wenn nein, kennt jemand ein (halbwegs humanes^^) Gegenbeispiel?

lg

Schadow

        
Bezug
ganze ringerweiterung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:15 Sa 11.08.2012
Autor: Berieux

Hallo!

Es gilt allgemein: Sind [mm]A\subset B[/mm] Integritätsbereiche und B ganz über A, so ist A genau dann ein Körper, wenn B ein Körper ist.

Der Beweis kann sofort aus der Definition gefolgert werden. Die für dich interessante Richtung:

Sei B ein Körper, [mm]0\neq a\in A[/mm]. Dann existiert [mm]a^{-1}\in B[/mm]. Da B ganz über A existiert ein Polynom mit Koeffizienten in A mit:
[mm]a^{-n}+k_{1}a^{-m+1}+...+k_{n}=0 [/mm]
Umstellen und multiplizieren mit [mm]a^{m-1}[/mm] liefert
[mm]a^{-1}=-(k_{1}+...+k_{n}a^{m-1}) \in A[/mm].

Die andere Richtung ist auch nicht schwerer.

Viele Grüße,
Berieux


Bezug
                
Bezug
ganze ringerweiterung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:43 Sa 11.08.2012
Autor: Schadowmaster

Hmm, da sucht man stundenlang und dann ist es so einfach... xD

Danke dir. ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]