www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Axiomatische Mengenlehre" - fundierte Mengen
fundierte Mengen < axiomatisch < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Axiomatische Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

fundierte Mengen: Beweis führen
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:55 So 13.11.2011
Autor: dennis2

Aufgabe
Definition: Eine Menge M heißt fundiert, falls gilt: [mm] $M=\emptyset$ [/mm] oder es ex. eine Menge [mm] $U\in [/mm] M$ mit [mm] $U\cap M=\emptyset$. [/mm]

Nun zu der eigentlichen Aufgabe:

Zeige: Ist die Menge M nicht fundiert, dann ex. für jedes [mm] $n\in\omega$ [/mm] [gemeint ist hier [mm] $\omega=\left\{0,1,2,3,...\right\}$, [/mm] die Menge aller natürlichen Zahlen nach von Neumann] eine endliche Folge [mm] $x_1,...,x_{n+1}\in [/mm] M$ mit [mm] $x_{n+1}\in x_n\in [/mm] ... [mm] \in x_2\in x_1\in [/mm] M$.


Als Anmerkung steht zu dieser Aufgabe noch: "Intuitiv möchte man diese Folge zu einer unendlichen Folge fortsetzen."


Hallo, liebe Helferinnen & Helfer!

Ich habe mit der obigen Aufgabe so meine Probleme bzw. keinen wirklichen Ansatz. Ich fange aber einfach mal an!

---------------------------

Sei M also eine nicht fundierte Menge. Das bedeutet nach der obigen Definition meines Erachtens:

[mm] $M\neq\emptyset\wedge \forall U\in [/mm] M: [mm] U\cap M\neq\emptyset$ [/mm]

Die Menge M ist also nicht-leer. Das heißt, es können abzählbar viele (endlich oder unendlich) oder überabzählbar viele Elemente in der Menge M enthalten sein.

Meine Idee ist, daß man vielleicht mit [mm] $x_1:=M$ [/mm] beginnt. Da nach Voraussetzung [mm] $x_1\cap M\neq\emptyset$ [/mm] gibt es [mm] $x_2$ [/mm] mit [mm] $x_2\in x_1\Rightarrow x_2\in [/mm] M$.

Weiter komme ich jedoch leider nicht!

Ist das überhaupt sinnvoll, was ich hier angefangen habe, was spielt die Menge [mm] $\omega$ [/mm] hier für eine Rolle?


Könnte mir jemand bitte helfen?


Achso, bevor ich das wieder vergesse zu erwähnen: Ich hab diese Aufgabe auch hier gestellt:

http://www.matheboard.de/thread.php?postid=1503493#post1503493

[Ich hoffe, das ist okay.]




Dennis

        
Bezug
fundierte Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:13 Mo 14.11.2011
Autor: tobit09

Hallo Dennis,

da die Frage im anderen Forum bereits beantwortet wurde, gehe ich mal davon aus, dass sie sich erübrigt hat.

Am Rande anmerken möchte ich noch, dass es sich bei eurer Definition von fundiert um eine sehr ungewöhnliche handelt. Eine Menge M braucht bei euch nur die leere Menge zu enthalten [mm] ($\emptyset\in [/mm] M$), schon ist sie fundiert, egal wie "wild" die sonstigen Elemente von M aussehen. Normalerweise fordert man eine viel stärkere Eigenschaft, wenn man von Fundiertheit spricht.

Viele Grüße
Tobias

Bezug
                
Bezug
fundierte Mengen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:22 Mo 14.11.2011
Autor: dennis2

Dort habe ich es jetzt so vorgeschlagen:

Die Menge M ist ja nicht fundiert, das bedeutet (nach der zu der Aufgabe mitgelieferten Definition), daß es ein [mm] $x_1\in [/mm] M$ gibt und man somit für $n=0$ schon eine Folge, wie sie die Aufgabe verlangt, gefunden hat.

Dann habe ich gesagt:
Da [mm] $x_1\cap M\neq\emptyset$, [/mm] gibt es ein [mm] $x_2\in x_1$, [/mm] das ebenfalls in M enthalten ist und [mm] $x_2\in x_1\in [/mm] M$.

Und so weiter und so fort.

Das wurde also okay bezeichnet. Oky, gut.

Aber was ich noch nicht ganz verstanden habe, ist (und das konnte auch in dem anderen Forum nicht so ganz geklärt werden), warum hier [mm] $\omega$ [/mm] auftaucht, womit ja die Menge aller natürlichen Zahlen nach von Neumann gemeint sein soll.


Liebe Grüße

Dennis

Bezug
                        
Bezug
fundierte Mengen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:24 Mi 16.11.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Axiomatische Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]