www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Aussagenlogik" - frage zu reflexivität u.a.
frage zu reflexivität u.a. < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

frage zu reflexivität u.a.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:42 Sa 31.10.2009
Autor: cspm2003

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo zusammen,
wir haben gerade reflexivität, transitivität, symetrie und antisymetri durchgenommen und da gibt es bei mir einige unklarheiten..  angenommen v:={ (x,y) [mm] \in \IQ [/mm] x [mm] \IQ [/mm] : x² = y }
wir haben aufgeschrieben die relation ist nicht reflexiv, nicht transitiv, nicht symetrisch aber antisymetrisch. kann mir jemand erklären warum das so ist? ich blick da gar nicht durch :-/

        
Bezug
frage zu reflexivität u.a.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:46 Sa 31.10.2009
Autor: cspm2003

oh, noch eine kurze ergänzungsfrage, wäre die reation transitiv falls wie folgt definiert?
v:={ (x,y) [mm] \in \IQ [/mm] x [mm] \IQ [/mm] | x [mm] \ge [/mm] 0 : x² = y }

Bezug
                
Bezug
frage zu reflexivität u.a.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:52 Sa 31.10.2009
Autor: Al-Chwarizmi


> oh, noch eine kurze ergänzungsfrage, wäre die relation
> transitiv falls wie folgt definiert?

>  $\ [mm] v:=\{ (x,y) \in \IQ \times \IQ\ |\ x \ge0 \wedge x^2 = y\}$ [/mm]


Nein.

Es ist zum Beispiel [mm] $(16,4)\in [/mm] v$ und [mm] $(4,2)\in [/mm] v$, aber [mm] (16,2)\notin [/mm] v


LG  


Bezug
        
Bezug
frage zu reflexivität u.a.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 Sa 31.10.2009
Autor: abakus

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo zusammen,
> wir haben gerade reflexivität, transitivität, symetrie
> und antisymetri durchgenommen und da gibt es bei mir einige
> unklarheiten..  angenommen v:={ (x,y) [mm]\in \IQ[/mm] x [mm]\IQ[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

: x² =

> y }
>  wir haben aufgeschrieben die relation ist nicht reflexiv,
> nicht transitiv, nicht symetrisch aber antisymetrisch. kann
> mir jemand erklären warum das so ist? ich blick da gar
> nicht durch :-/

Wenn sie refexiv wäre, müsste für alle x auch xRx gelten, also x^2=x.
Wenn sie symmetrisch wäre, müsste aus xRy auch yRx folgen. Aus x^2=y folgt aber nicht unbedingt y^2=x. (Im Paar (-1|1) gilt zwar (-1)^2=1, aber nicht 1^2=-1).
Wäre sie transitiv, müsste aus x^2=y und y^2=z auch x^2=z folgen.
Gruß Abakus


Bezug
                
Bezug
frage zu reflexivität u.a.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:11 Sa 31.10.2009
Autor: cspm2003

das erklärt schon mal einiges, jetzt aber noch eine frage zur antisymetrie: für den punkt x = 1 gilt ja folgendes:
[mm] x^2 [/mm] = y [mm] \gdw y^2 [/mm] = x [mm] \gdw [/mm] x = y
was ja bzgl. der antisymetrie korrekt wäre, aber laut definition der antisymetrie muss das ja für jeden punkt gelten aber das ist ja nicht der fall. warum ist die relation dann antisymetrisch?

Bezug
                        
Bezug
frage zu reflexivität u.a.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:32 Sa 31.10.2009
Autor: Al-Chwarizmi


> das erklärt schon mal einiges, jetzt aber noch eine frage
> zur antisymetrie: für den punkt x = 1 gilt ja folgendes:
>  [mm]x^2[/mm] = y [mm]\gdw y^2[/mm] = x [mm]\gdw[/mm] x = y
>  was ja bzgl. der antisymetrie korrekt wäre, aber laut
> definition der antisymetrie muss das ja für jeden punkt
> gelten aber das ist ja nicht der fall. warum ist die
> relation dann antisymetrisch?  


Lies die Definition der antisymmetrischen Relation
genau nach:

Die Antisymmetrie einer zweistelligen Relation R auf
einer Menge ist gegeben, wenn für zwei beliebige
verschiedene Elemente x und y der Menge nicht
gleichzeitig x R y und y R x gelten kann.
Äquivalent formuliert heißt dies, dass für beliebige
Elemente x und y der Menge aus x R y und y R x
stets x = y folgt. Man nennt R dann antisymmetrisch.


LG


Bezug
                        
Bezug
frage zu reflexivität u.a.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:33 Sa 31.10.2009
Autor: abakus


> das erklärt schon mal einiges, jetzt aber noch eine frage
> zur antisymetrie: für den punkt x = 1 gilt ja folgendes:


>  [mm]x^2[/mm] = y [mm]\gdw y^2[/mm] = x [mm]\gdw[/mm] x = y

Hallo, der erste [mm] \gdw [/mm] -Pfeil ist falsch. Da muss [mm] \wedge [/mm] stehen.
Für das Zahlenpaar (1;1) gilt
[mm] x^2= [/mm] y  UND [mm] y^2 [/mm] = x  . Diese UND-Verknüpfung gilt genau dann wenn x=y


>  was ja bzgl. der antisymetrie korrekt wäre, aber laut
> definition der antisymetrie muss das ja für jeden punkt
> gelten aber das ist ja nicht der fall. warum ist die
> relation dann antisymetrisch?  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]