www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - formale Sprache, Beweis
formale Sprache, Beweis < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

formale Sprache, Beweis: Brauche Tipps
Status: (Frage) beantwortet Status 
Datum: 21:37 Do 23.04.2009
Autor: diecky

Aufgabe
Es sei ein v, w [mm] \in [/mm] Sigma* gegeben mit:
1) vw = [mm] w^{R}v [/mm] (R bezeichnet das Wort ruckwärts geschrieben)
2) |w| [mm] \ge [/mm] |v|
Beweisen oder zeigen sie einen Widerspruch, dass daraus [mm] (vw)^{R} [/mm] = vw folgt.

Noch eine kurze Anmerkung: v und w seien Wörter, Sigma soll irgendein Alphabet mit beliebiger Länge (kann auch [mm] \varepsilon [/mm] := Länge ist 0 sein).

Leider habe ich absolut keine Ahnung wie ich am besten an die Aufgabe rangehe. Geht das vielleicht bei der a) über strukturelle Induktion? Und wenn ja, kann mir jemand einen Tipp oder Ansatz geben?
Wär wirklich super klasse!

Und wenn ich sag ich mal zu b) einfach ein Widerspruch zeige, indem ich zwei Wörter finde (reines Zahlenbsp.), die die gegebene Bedingung zwar erfüllen, aber nicht das was bewiesen werden soll: hab ich dann automatisch die Aufgabe schon gelöst? Zum Beispiel wäre für die Aufgabe b) ja für v= 1111 und w = 1011 die Bedingung ja erfüllt (Wortlänge beide Male 4), aber es stimmt die zu zeigende Bedingung nicht, da [mm] (vw)^{R} [/mm] = vw => 11011111 [mm] \not= [/mm] 11111011 ?!

Vielen Dank schonmal

        
Bezug
formale Sprache, Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 Do 23.04.2009
Autor: felixf

Hallo!

> Es sei ein v, w [mm]\in[/mm] Sigma* gegeben mit:
>  1) vw = [mm]w^{R}v[/mm] (R bezeichnet das Wort ruckwärts
> geschrieben)
>  2) |w| [mm]\ge[/mm] |v|

Betrag ist die Laenge des Wortes, oder?

>  Beweisen oder zeigen sie einen Widerspruch, dass daraus
> [mm](vw)^{R}[/mm] = vw folgt.
>
>  Noch eine kurze Anmerkung: v und w seien Wörter, Sigma
> soll irgendein Alphabet mit beliebiger Länge (kann auch
> [mm]\varepsilon[/mm] := Länge ist 0 sein).

Aus $v w = [mm] w^R [/mm] v$ und $|w| [mm] \ge [/mm] |v|$ folgt ja schonmal, dass $w$ von der Form $t v$ sein muss mit $t$ einem anderen Wort.

Dann folgt aus $v w = [mm] w^R [/mm] v$, dass $v t v = [mm] v^R t^R [/mm] v$ ist, also dass [mm] $v^R [/mm] = v$ und [mm] $t^R [/mm] = t$ ist.

Damit solltest du weiterkommen...

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]