www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - fixierte Räume
fixierte Räume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

fixierte Räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:13 Fr 30.01.2004
Autor: Moe_Hammed

Hi Leute!

[mm] M=\begin{pmatrix} -5 & -8 & -9 \\ -4 & 1 & 2 \\ 4 & 1 & 0 \end{pmatrix} \in Mat [/mm]3x3(Q)

Habe dazu  ausgerechnet:

p(x)=-x3-4x2+3x+18
m(x)=(x+3)2(x-2)
Eigenwerte: -3, 2
Eigenräume V(-3)=<(-1,-2,2)>, V(2)=<(-1,2,-1)>

Jetzt soll ich die von M fixierten Teilräume von V=Q3 angeben.
Kann mit dem Begriff "fixierteTeilräume" leider nicht so viel anfangen...  

        
Bezug
fixierte Räume: Antwort
Status: (Antwort) fertig Status 
Datum: 13:23 Fr 30.01.2004
Autor: Marc

Hallo Moe_Hammed,

> p(x)=-x3-4x2+3x+18

[ok]

>  m(x)=(x+3)2(x-2)

[ok]

>  Eigenwerte: -3, 2

[ok]

>  Eigenräume V(-3)=<(-1,-2,2)>, V(2)=<(-1,2,-1)>

Das habe ich noch nicht nachgerechnet, aber es wird für deine Frage auch nicht benötigt.

> Jetzt soll ich die von M fixierten Teilräume von
> V=Q3 angeben.
>  Kann mit dem Begriff "fixierteTeilräume" leider nicht so
> viel anfangen...  

Den Begriff kenne ich so auch nicht, aber -- besonders in diesem Zusammenhang -- Sinn machen würde, dass damit die M-invarianten Teilräume gemeint sind, also die Vektorräume [mm] $W_i\subset V=\IQ^3$, [/mm] so dass [mm] $M(W_i)\subset W_i$. [/mm]
(Das Bild jedes Vektors aus [mm] $W_i$ [/mm] befindet sich wieder in [mm] $W_i$.) [/mm]

Das Minimalpolynom hast du nun ja schon gefunden, und du hast es auch schon direkt als Produkt irreduzibler Faktoren hingeschrieben: [mm] $m(x)=p_1^{n_1}*p_2^{n_2}$ [/mm] mit [mm] $p_1=x+3$ [/mm] und [mm] $p_2=x-2$ [/mm] und [mm] $n_1=2$, $n_2=1. [/mm]

Für die M-invarianten Teilräume gilt nun [mm] $$W_i=\Kern p_i(M)^{n_i}$$ [/mm]
Das ist nur eine auf den ersten Blick komplizierte Schreibweise für ein einfaches lineares Gleichungssystem; zuerst eine kleine Nebenrechnung:
[mm] $p_1(M)^{n_1}=(M+3)^2=\begin{pmatrix} 0 & -25 & -25 \\ 0 & 50 & 50 \\ 0 & -25 & -25 \end{pmatrix}$ [/mm] und
[mm] $p_2(M)^{n_2}=M-2=\begin{pmatrix} -7 & -8 & -9 \\ -4 & -1 & 2 \\ 4 & 1 & -2 \end{pmatrix}$ [/mm]
Zu lösen sind also diese LGS:
für [mm] $W_1: \; \left( \begin{array}{ccc|l} 0 & -25 & -25 & 0\\ 0 & 50 & 50 & 0\\ 0 & -25 & -25 & 0\end{array}\right)$ [/mm]
für [mm] $W_2: \; \left( \begin{array}{ccc|l} -7 & -8 & -9 & 0 \\ -4 & -1 & 2 & 0\\ 4 & 1 & -2 & 0\end{array}\right)$ [/mm]

Kommst du klar?

Viele Grüße,
Marc.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]