www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - fast sichere Konvergenz
fast sichere Konvergenz < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

fast sichere Konvergenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:13 Mi 05.07.2017
Autor: questionpeter

Aufgabe
Seien [mm] X_1, X_2,... [/mm] reeler Zufallsvariablen mit [mm] P(X_n=2^n)=\bruch{1}{2^n} [/mm] und [mm] P(X_n=0)=1-\bruch{1}{2^n} [/mm] für allse [mm] n\in\IN. [/mm] Setze [mm] S_n:=X_1+...+X_n [/mm] für [mm] n\in\IN [/mm]
Zeige: [mm] S_n/n\rightarrow [/mm] 0 fast sicher für [mm] n\rightarrow \infty [/mm]

Hallo zusammen,

ich sitze vor diese Aufgabe und kommen irgendwie nicht zum gewünschten Ergebnis. Ich hoffe, ihr könnt mir da etwas weiterhelfen

Erstmal habe ich folgendes berechnet:

[mm] E(X_n)=2^n*\bruch{1}{2^n}+0*(1-\bruch{1}{2^n})=1 [/mm]
Das würde heißen

[mm] S_n/n\rightarrow [/mm] 1 für [mm] n\rightarrow \infty [/mm]

Aber das stimmt nicht überein, mit dem was ich zeigen sollte.

Wo liegt mein Denkfehler? Vielen Dank im Voraus.

        
Bezug
fast sichere Konvergenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Fr 07.07.2017
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]