www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - faktorielle
faktorielle < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

faktorielle: Frage
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 10:21 Di 16.11.2004
Autor: girlie0018

Ich habe diese Frage in keinem Forum auf anderen Internetseite gestellt.

Auf n Zellen sollen k Teilchen so verteilt werden, dass in der i-ten Zelle genau ki Teilchen liegen, wobei k1 + k2 + .... + kn = k sei. Wieviele verschiedene Verteilungen gibt es?

Auf n Zellen sollen k nicht unterscheidbare Teilchen so verteilt werden, dass jede Zelle höchstens ein Teilchen enthält. Wieviele verschiedene Verteilungen gibt es?


Auf n Zellen sollen k nicht unterscheidbare Teilchen beliebig verteilt werden. Wieviele verschiedene Verteilungen gibt es?


Wieviele k-Tupel(a1,a2,....,ak) paarweise verschiedener Zahlen a1, a2, ...., ak E {1,2,....,n} gibt es?

        
Bezug
faktorielle: Die Physik/Stochastik sagt:
Status: (Antwort) fertig Status 
Datum: 13:37 Di 16.11.2004
Autor: Holger81

Nunja, das sind ja jetzt drei bekannte Modelle aus der Physik.

Fall 1: Maxwell-Boltzmann
Fall 2: Fermi-Dirac
Fall 3: Bose-Einstein

Man kann sich nun die Räume überlegen:
[mm] (p_i [/mm] seien die Partikel, [mm] z_i [/mm] die Zellen)

Fall 1:
[mm] Omega = \{(z_1,...,z_n\} | \bigcup_{i=1}^{n}z_i = \{p_1,...,p_k\} ; |z_i| \in \{0,...,k\}; i=1,...,n \} [/mm]
Es gilt: [mm] |Omega| = n^k [/mm]

Fall 2:
[mm] Omega = \{(z_1,...,z_n)|z_i \in \{0,1\} ; i = 1,...,n ; \summe_{i=1}^{n} zi =k \} [/mm]
Es gilt: [mm] |Omega| = \vektor{n \\ k} [/mm]

Fall 3:
[mm] Omega = \{(z_1,...,z_n)|z_i \in \{0,..,k\} ; i = 1,...,n ; \summe_{i=1}^{n} zi = k\} [/mm]
Es gilt: [mm] |Omega| = \vektor{k+n-1 \\ k} [/mm]

Ich denke das sollte es sein, wenn wirklich nur Verteilungen gefragt sind.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]