www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - f(x)=x^3 lnx monoton fallend für...
f(x)=x^3 lnx monoton fallend für... < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

f(x)=x^3 lnx monoton fallend für...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:27 So 25.07.2004
Autor: MatzeL

moinmoin!
hab letzte woche meine analysis-klausur geschrieben und im nachhinein ein frage. (auch wenn's leider schon zu spät ist)
eine aufgabe war:
Für welche Werte von x ist die Funktion [mm] f(x)=x^3 [/mm] lnx monoton fallend.
Ich hatte mir überlegt, [mm] x^3 [/mm] steigt monoton, lnx auch, also wird das Produkt auch monoton steigen, f(x) also keinesfalls monoton fallen.
Leider war das, wie ich nun weiß, falsch, laut Lösung fällt f(x) für alle x<1/e
Kann mir das vielleicht bitte einer erklären?

ich habe diese frage in keinem anderen forum gestellt.

p.s.: sorry wegen der schreibweise, aber irgendwie krieg ich das nicht anders hin.

        
Bezug
f(x)=x^3 lnx monoton fallend für...: Antwort
Status: (Antwort) fertig Status 
Datum: 00:20 Mo 26.07.2004
Autor: Marc

Hallo MatzeL!

[willkommenmr]

>  Für welche Werte von x ist die Funktion [mm]f(x)=x^3[/mm] lnx
> monoton fallend.
>  Ich hatte mir überlegt, [mm]x^3[/mm] steigt monoton, lnx auch, also
> wird das Produkt auch monoton steigen, f(x) also
> keinesfalls monoton fallen.

Das stimmt soweit auch -- allerdings nur, falls die beteiligten Funktionswerte positiv sind.
Ein einfaches Beispiel ist f(x)=x und g(x)=x. Beide Funktionen sind monoton steigend, ihr Produkt aber nicht.

>  Leider war das, wie ich nun weiß, falsch, laut Lösung
> fällt f(x) für alle x<1/e
>  Kann mir das vielleicht bitte einer erklären?

Wir können also schon mal sagen, dass [mm] x^3*\ln(x) [/mm] für x>1 monoton steigend ist, da dort beide Funktionen positiv sind. Was aber für x<1 passiert, muß separat untersucht werden.

Die Monotonie einer Funktion kann ja an der ersten Ableitung abgelesen werden:
[mm] $f'(x_0)>0$ $\Rightarrow$ [/mm] f an der Stelle [mm] x_0 [/mm] (bzw. in einer Umgebung von [mm] $x_0$) [/mm] monoton wachsend
[mm] $f'(x_0)<0$ $\Rightarrow$ [/mm] f an der Stelle [mm] x_0 [/mm] monoton fallend

Die erste Ableitung von [mm] $f(x)=x^3*\ln [/mm] x$ lautet:

[mm] $f'(x)=3x^2*\ln x+x^3*\bruch{1}{x}=x^2*\left( 3\ln x+1\right)$ [/mm]

Wir suchen die Stellen, für die [mm] $f'(x_0)<0$ [/mm] gilt (übrigens ist [mm] $x_0>0$): [/mm]

[mm] $f'(x_0)<0$ [/mm]
[mm] $\gdw$ $x^2*\left( 3\ln x+1\right)<0$ [/mm]   | [mm] $x^2$ [/mm] ist positiv im Definitionsbereich
[mm] $\gdw$ $3\ln [/mm] x+1<0$
[mm] $\gdw$ $\ln x<-\bruch{1}{3}$ [/mm] | [mm] $e^{\ldots}$, $\exp(\ldots)$ [/mm] ist monoton steigend, erhält also die Ungleichung
[mm] $\gdw$ $x [mm] $\gdw$ $x<\bruch{1}{e^{\bruch{1}{3}}}$ [/mm]
[mm] $\gdw$ $x<\bruch{1}{\wurzel[3]{e}}=\wurzel[3]{\bruch{1}{e}}$ [/mm]

Also ist deine andere Lösung auch falsch...

Hier noch ein []FunkyPlot:
[Dateianhang nicht öffentlich]

Viele Grüße,
Marc

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
f(x)=x^3 lnx monoton fallend für...: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:43 Mo 26.07.2004
Autor: MatzeL

wow, wenn das mal nicht ne schnelle und auch noch gute antwort war, besten dank!
dass allerdings die andere lösung nicht stimmte ist ein ding, denn das war immerhin die lösung, die mein mathe-prof online gestellt hat. bin mal sehr gespannt, was er dazu sagt!
besten dank nochmal!
matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]