www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - f(v)=0 und f(u)=u
f(v)=0 und f(u)=u < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

f(v)=0 und f(u)=u: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:37 Mo 12.02.2007
Autor: celeste16

Aufgabe
a) Angenommen, f: V [mm] \to [/mm] W ist eine lineare Abbildung, U [mm] \subset [/mm] V ist ein echter Unterraum,und f(v) = 0 für alle v [mm] \in V\U. [/mm] Zeigen Sie, dass f(v) = 0 für alle v [mm] \in [/mm] V .

b)Sei V ein endlich dimensionaler k-Vektorraum und U [mm] \subseteq [/mm] V ein Unterraum. Zeigen Sie, dass es eine lineare Abbildung f: V [mm] \to [/mm] U gibt derart, dass f(u) = u
gilt für jedes u [mm] \in [/mm] U.

tut mir leid aber ich habe noch 2 aufgaben.

ich kann auch nicht viel posten weil ich nie weiß wie ich das zeigen soll. ich würde es aber gerne noch mal sehen um bei der klausur wenigstens ne idee oder nen ansatz zu haben.



        
Bezug
f(v)=0 und f(u)=u: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Mo 12.02.2007
Autor: angela.h.b.


> a) Angenommen, f: V [mm]\to[/mm] W ist eine lineare Abbildung, U
> [mm]\subset[/mm] V ist ein echter Unterraum,und f(v) = 0 für alle v
> [mm]\in V\U.[/mm] Zeigen Sie, dass f(v) = 0 für alle v [mm]\in[/mm] V .

Hallo,

so, wie Du es aufgeschrieben hast, gibt's bei a) absolut nix zu zeigen.

>  
> b)Sei V ein endlich dimensionaler k-Vektorraum und U
> [mm]\subseteq[/mm] V ein Unterraum. Zeigen Sie, dass es eine lineare
> Abbildung f: V [mm]\to[/mm] U gibt derart, dass f(u) = u
>  gilt für jedes u [mm]\in[/mm] U.

Zu b)
Eine Basis B von U kannst Du in V erweitern zu einer Basis von V.
Bilde die Basiselemente von B durch f auf sich selber ab und zeige, indem Du die Linearität ausnutzt, daß so jedes Element von U auf sich selber abgebildet wird.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]