www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - f-invariant
f-invariant < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

f-invariant: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:44 Do 10.05.2007
Autor: clover84

Aufgabe
geg: Sei V ein endlichdimensionaler VR, 0 [mm] \not= [/mm] f [mm] \in [/mm] End(V) mit [mm] f^n [/mm] = 0 für ein n [mm] \in \IN. [/mm] Sei W der Eigenraum zum Eigenvektor 0

z.z.: Ist V = U [mm] \oplus [/mm] W, so ist U nicht f-invariant.

Hallo zusammen,

ich weiß nicht so recht, ob mein Beweis richtig ist. Könnte sich das bitte jemand ansehen:

Beweis:

Annahme: f(U) [mm] \subseteq [/mm] U
Wähle ein x [mm] \in [/mm] U mit x [mm] \not= [/mm] 0. Ein solches x existiert, da U [mm] \oplus [/mm] W = V, aber V [mm] \not= [/mm] W.
Dann gilt f(x) [mm] \in [/mm] U und f(x) [mm] \not= [/mm] 0, da sonst x [mm] \in [/mm] W wäre. Induktiv folgt nun [mm] f^n(x) \in [/mm] U und [mm] f^n(x)\not= [/mm] 0 für alle n [mm] \in \IN, [/mm] d.h. [mm] f^n \not= [/mm] 0 für alle n [mm] \in \IN. [/mm]
Ein Widerspruch zur Voraussetzung.
Daraus folgt, dass U nicht f-invariant ist.

Stimmt das soweit? Ist der letzte Satz richtig??

Danke im voraus.

        
Bezug
f-invariant: Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 Do 10.05.2007
Autor: angela.h.b.


> geg: Sei V ein endlichdimensionaler VR, 0 [mm]\not=[/mm] f [mm]\in[/mm]
> End(V) mit [mm]f^n[/mm] = 0 für ein n [mm]\in \IN.[/mm] Sei W der Eigenraum
> zum Eigenvektor 0
>  
> z.z.: Ist V = U [mm]\oplus[/mm] W, so ist U nicht f-invariant.
>  Hallo zusammen,
>  
> ich weiß nicht so recht, ob mein Beweis richtig ist. Könnte
> sich das bitte jemand ansehen:

Hallo,

ich finde Deinen Beweis richtig, manches würde ich ein wenig anders formulieren.

>  
> Beweis:
>  
> Annahme: f(U) [mm]\subseteq[/mm] U

Da V die direkte Summe von U und W ist, also insbes. [mm] U\not=0, [/mm] gibt es ein

>  Wähle ein x [mm]\in[/mm] U mit x [mm]\not=[/mm] 0. Ein solches x existiert,
> da U [mm]\oplus[/mm] W = V, aber V [mm]\not=[/mm] W.

>  Dann gilt f(x) [mm]\in[/mm] U und f(x) [mm]\not=[/mm] 0, da sonst x [mm]\in[/mm] W  
> wäre.

(denn die Summe ist direkt)

>  Induktiv folgt nun [mm]f^n(x) \in[/mm] U und [mm]f^n(x)\not=[/mm] 0 für
> alle n [mm]\in \IN,[/mm] d.h. [mm]f^n \not=[/mm] 0 für alle n [mm]\in \IN.[/mm],

(Diese Induktion würde ich sicherheitshalber ausführen.)

>  Ein

im

> Widerspruch zur Voraussetzung.

Also kann U nicht f-invariant sein.

>  Daraus folgt, dass U nicht f-invariant ist.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]