www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - exponentialverteilung
exponentialverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

exponentialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:28 Sa 22.04.2006
Autor: schelm00

Aufgabe
Die Lebensdauer eines Bauteils (in Stunden) sei exponential-verteilt mit Paramenter
alpha= 400^-1: Sei A(t) das Ereignis
"Das Bauteil arbeitet mindestens t Stunden."
(a) Berechnen Sie die Wahrscheinlichkeit der Ereignisse A(t) fur t = 200; 600; 800.
(b) Wie wahrscheinlich ist eine Arbeitszeit zwischen 600 und 800 Stunden ?
(c) Bestimmen Sie die Verteilungsfunktion der Arbeitszeit eines solchen Bauteils, wenn
das Bauteil nach 600 Stunden Arbeitszeit auf jeden Fall ausgewechselt und entsorgt wird.

Hat jemand da ne idee, wie ich da ran gehn kann?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
exponentialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:27 Mo 24.04.2006
Autor: felixf


> Die Lebensdauer eines Bauteils (in Stunden) sei
> exponential-verteilt mit Paramenter
>  alpha= 400^-1: Sei A(t) das Ereignis
>  "Das Bauteil arbeitet mindestens t Stunden."

Wenn $f(t)$ die Dichte der Exponentialverteilung mit dem Parameter [mm] $\alpha$ [/mm] ist, dann ist $P(A(t)) = [mm] \int_t^\infty [/mm] f(t) [mm] \; [/mm] dt = 1 - [mm] \int_0^t [/mm] f(t) [mm] \; [/mm] dt$. Wenn du die Verteilungsfunktion $F$ von der Exponentialverteilung mit dem Parameter [mm] $\alpha$ [/mm] hast, dann ist $P(A(t)) = 1 - F(t)$.

Eins davon hast du, also kannst du $P(A(t))$ ausrechnen.

>  (a) Berechnen Sie die Wahrscheinlichkeit der Ereignisse
> A(t) fur t = 200; 600; 800.

Das kannst du jetzt damit.

>  (b) Wie wahrscheinlich ist eine Arbeitszeit zwischen 600
> und 800 Stunden ?

Du suchst also $P(A(600) [mm] \setminus [/mm] A(800)) = P(A(600)) - P(A(800))$. Weisst du, warum es gerade diese Formel ist?

>  (c) Bestimmen Sie die Verteilungsfunktion der Arbeitszeit
> eines solchen Bauteils, wenn
>  das Bauteil nach 600 Stunden Arbeitszeit auf jeden Fall
> ausgewechselt und entsorgt wird.
>  Hat jemand da ne idee, wie ich da ran gehn kann?

Die Verteilungsfunktion $F(t)$ an der Stelle $t$ gibt ja grad die Wahrscheinlichkeit, dass die Arbeitszeit [mm] $\le [/mm] t$ ist. Also ist die gesuchte Verteilungsfunktion fuer $t < 600$ die der Exponentialverteilung. Hast du eine Idee, wie die gesuchte Verteilungsfunktion fuer $t [mm] \ge [/mm] 600$ aussieht?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]