www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - existenz einer lösung
existenz einer lösung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

existenz einer lösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:04 So 18.11.2007
Autor: balisto

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

hallo!

ich soll aus der nagumo-bedingung die existenz einer lösung des anfangswertproblemes x'(t)=f(t,x(t)), x(0)=x0 beweisen (dabei ist f stetig).

meine idee ist jetzt folgende:

die nagumo-bedingung lautet ja:
|t| * |f(t,x) - f(t,y)| kleiner gleich |x-y|

da f stetig ist, müsste man doch nur noch zeigen, dass es auch beschränkt ist, denn dann könnte ich ja den existenzsatz von peano anwenden, oder?

aber wie kann ich zeigen, dass es beschränkt ist?

Danke schon mal!

        
Bezug
existenz einer lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 05:23 Mo 19.11.2007
Autor: MatthiasKr

Hi,
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> hallo!
>  
> ich soll aus der nagumo-bedingung die existenz einer lösung
> des anfangswertproblemes x'(t)=f(t,x(t)), x(0)=x0 beweisen
> (dabei ist f stetig).
>  
> meine idee ist jetzt folgende:
>  
> die nagumo-bedingung lautet ja:
>  |t| * |f(t,x) - f(t,y)| kleiner gleich |x-y|
>  
> da f stetig ist, müsste man doch nur noch zeigen, dass es
> auch beschränkt ist, denn dann könnte ich ja den
> existenzsatz von peano anwenden, oder?
>  
> aber wie kann ich zeigen, dass es beschränkt ist?

bist du sicher, dass du die aufgabe hier komplett angegeben hast? Weil: die existenz einer lokalen loesung kannst du schon aus der stetigkeit von $f$ folgern (peano). stetige funktionen sind ja beschraenkt auf kompakten mengen, wenn du also $f$ auf kompakten mengen betrachtest (was im satz von peano getan wird), so ist es automatisch beschraenkt.

bleibt die frage, was du mit der nagumo-bedingung anstellen sollst. Ist nicht auch nach eindeutigkeit gefragt? und muss f wirklich stetig sein?

gruss
matthias

Bezug
                
Bezug
existenz einer lösung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:35 Mo 19.11.2007
Autor: balisto

hallo,

wie ich die eindeutigkeit zeigen kann, ist mir klar.
bei der existenz hab ich einfach nicht drangedacht, dass stetige funktionen auf einem kompakten intervall ein maximum annehmen und damit beschränkt sind :P

danke! jetzt ist denk ich alles klar.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]