www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - erste Variation
erste Variation < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

erste Variation: Ableitung nach einer Matrix
Status: (Frage) überfällig Status 
Datum: 17:29 Di 20.10.2009
Autor: Deuterinomium

Aufgabe
Zu [mm] $n,N\in\mathbb{N}$ [/mm] und offener Menge [mm] $\Omega\subset\mathbb{R}^n$ [/mm] sei die Funktion

[mm] $F:\Omega\times\mathbb{R}^N\times\mathbb{R}^{n\times N} \longrightarrow \mathbb{R}; (x,z,p)\mapsto [/mm] F(x,z,p)$
gegeben. Ferner sei die zweimal stetig differenzierbare Funktion [mm] $u:\Omega\longrightarrow \mathbb{R}^N$ [/mm] ein kritischer Punkt des Variationsintegrals

[mm] ${\cal F} (v):=\int_{\Omega}F(x,v(x),Dv(x))dx$, [/mm]

d.h. die erste Variation verschwindet für alle Testvektoren [mm] $\phi$ [/mm] :

[mm] $0=\frac{d}{d\varepsilon}\int_{\Omega}F(x,u+\varepsilon\phi,Du+\varepsilon D\phi)dx\Bigr|_{\varepsilon=0}$ [/mm]

Man leite die zugehörigen Euler-Lagrange Gleichungen für $u$ ab.

Hi!

Also nach dem Satz über Parameterabhängige Integrale hab ich die Ableitung unters Integral gezogen und muss nun nach der Kettenregel differenzieren. Aber wie leite ich $F$ nach $p$ ab?

Schließlich ist $p$ doch eine Matrix?

Kann mir jemand helfen?

Gruß Deuterinomium

        
Bezug
erste Variation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Do 22.10.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]