www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - epsilon-delta-kriterium
epsilon-delta-kriterium < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

epsilon-delta-kriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:27 Mo 19.05.2008
Autor: Anna-Lyse

Hallo,

ich möchte mit [mm] \varepsilon-\delta-Kriterium [/mm] zeigen, dass
[mm] f:\IR->\IR [/mm]
f(x) := [mm] x^2-8x+3 [/mm]
im Punkt a=4 stetig ist.

Also grob formuliert:
[mm] \forall \varepsilon [/mm] >0 [mm] \exists \delta [/mm] >0 [mm] \forall x\in \IR [/mm] : [mm] (|x-4|<\delta [/mm] => [mm] |f(x)-f(a)|<\varepsilon [/mm]
d.h.
[mm] \forall \varepsilon [/mm] >0 [mm] \exists \delta [/mm] >0 [mm] \forall x\in \IR [/mm] : [mm] (|x-4|<\delta [/mm] => [mm] |(x-4)^2|<\varepsilon [/mm]

d.h. ich setze [mm] \delta:=\wurzel{\varepsilon} [/mm] ??

Danke,
Anna

        
Bezug
epsilon-delta-kriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 17:31 Mo 19.05.2008
Autor: Gonozal_IX

Hallo Anna,

> ich möchte mit [mm]\varepsilon-\delta-Kriterium[/mm] zeigen, dass
> [mm]f:\IR->\IR[/mm]
>  f(x) := [mm]x^2-8x+3[/mm]
>  im Punkt a=4 stetig ist.

Dann wollen wir mal :)

> Also grob formuliert:
>  [mm]\forall \varepsilon[/mm] >0 [mm]\exists \delta[/mm] >0 [mm]\forall x\in \IR[/mm]
> : [mm](|x-4|<\delta[/mm] => [mm]|f(x)-f(a)|<\varepsilon[/mm]

Soweit so gut, aber erstmal, was ist a und was ist f(a)?

>  d.h.
>  [mm]\forall \varepsilon[/mm] >0 [mm]\exists \delta[/mm] >0 [mm]\forall x\in \IR[/mm]
> : [mm](|x-4|<\delta[/mm] => [mm]|(x-4)^2|<\varepsilon[/mm]

Also Wenn du mir mal erklären könntest, wie du auf [mm]|(x-4)^2|<\varepsilon[/mm] gekommen bist, sind wir bestimmt ein Stück weiter.

Wie du schon erkannt hast, ist die Methode letztlich ein "Zu gegebenem Epsilon, wähle ein Delta" - Ratespielchen.
Aber alles nach und nach.

MfG,
Gono.


Bezug
                
Bezug
epsilon-delta-kriterium: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:27 Mo 19.05.2008
Autor: Anna-Lyse

Hallo Gono,

vielen Dank auch für Deine Antwort!

Gruß,
Anna

Bezug
        
Bezug
epsilon-delta-kriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 17:38 Mo 19.05.2008
Autor: schachuzipus

Hallo Anna,

> Hallo,
>  
> ich möchte mit [mm]\varepsilon-\delta-Kriterium[/mm] zeigen, dass
> [mm]f:\IR->\IR[/mm]
>  f(x) := [mm]x^2-8x+3[/mm]
>  im Punkt a=4 stetig ist.
>  
> Also grob formuliert:
>  [mm]\forall \varepsilon[/mm] >0 [mm]\exists \delta[/mm] >0 [mm]\forall x\in \IR[/mm]
> : [mm](|x-4|<\delta[/mm] => [mm]|f(x)-f(a)|<\varepsilon[/mm]
>  d.h.
>  [mm]\forall \varepsilon[/mm] >0 [mm]\exists \delta[/mm] >0 [mm]\forall x\in \IR[/mm]
> : [mm](|x-4|<\delta[/mm] => [mm]|(x-4)^2|<\varepsilon[/mm]
>  
> d.h. ich setze [mm]\delta:=\wurzel{\varepsilon}[/mm] ?? [daumenhoch]

Ja, das stimmt, du hättest aber ein paar Worte zur Auffindung des [mm] $\delta$ [/mm] verlieren können und etwas Rechenweg mitposten können...

Mit deinem so konstruierten [mm] $\delta$ [/mm] gilt nämlich die ganze Abschätzungskette für [mm] $|x-4|<\delta$ [/mm]


Wenn du's nachher aufschreibst, mache es andersherum, wähle zu beliebigem [mm] $\varepsilon>0$ [/mm] dein [mm] $\delta$ [/mm] und zeige dann die Abschätzungskette.

Die obige Rechnung ist fürs Schmierblatt ;-)

>  
> Danke,
>  Anna


LG

schachuzipus

Bezug
                
Bezug
epsilon-delta-kriterium: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:25 Mo 19.05.2008
Autor: Anna-Lyse

Hallo schachuzipus,

super. Vielen Dank für Deine hilfreiche Antwort!

Gruß,
Anna


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]