www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - endliche Summe
endliche Summe < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

endliche Summe: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:18 Mo 28.06.2010
Autor: konvex

Hallo, ich will zeigen dass ich [mm] \pi>0 [/mm] zu [mm] \bruch{\pi}{\summe_{i\in I}\pi(i)} [/mm] normieren kann falls I eine endliche Menge ist.

Kann ich dabei einfach schlussfolgern dass die summe [mm] \summe_{i\in I}\pi(i) [/mm] endlich ist wenn I endlich ist???
Weil ich muss ja bestimmt zeigen dass diese summe weder null noch unendlich ist, oder?

        
Bezug
endliche Summe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:22 Mo 28.06.2010
Autor: fred97

Erklärst Du freundlicherweise, was hier [mm] \pi [/mm] und [mm] \pi(i) [/mm] bedeuten ?

FRED

Bezug
                
Bezug
endliche Summe: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:26 Mo 28.06.2010
Autor: konvex

also [mm] \pi [/mm] ist eine funktion [mm] \pi:I->[0,\infty) [/mm] und erfüllt

[mm] \summe_{i\in I} \pi(i)p_{ij}=\pi(j), [/mm]    

mit [mm] j\in [/mm] I.



Bezug
                        
Bezug
endliche Summe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:27 Mo 28.06.2010
Autor: fred97


> also [mm]\pi[/mm] ist eine funktion [mm]\pi:I->[0,\infty)[/mm] und erfüllt
>  
> [mm]\summe_{i\in I} \pi(i)p_{ij}=\pi(j),[/mm]    
>
> mit [mm]j\in[/mm] I.

Mann, mann, muß man Dir alles einzeln aus der Nase ziehen ? Und was ist [mm] p_{ij} [/mm]  ?

FRED

>  
>  


Bezug
                                
Bezug
endliche Summe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:30 Mo 28.06.2010
Autor: konvex

Ja, entschuldige :-( ich wollte es grad noch hinzufügen [mm] p_{ij} [/mm] sind einfach elemente aus [0,1].

Bezug
                                
Bezug
endliche Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:40 Mo 28.06.2010
Autor: konvex

Hast du dazu eine Idee? weil mehr informationen hab ich nicht gegeben.

Bezug
                                        
Bezug
endliche Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 Mo 28.06.2010
Autor: fred97


> Hast du dazu eine Idee?

Nee

> weil mehr informationen hab ich
> nicht gegeben.

Das ist aber spärlich. Was machst Du wenn alle [mm] p_{ij}=0 [/mm] sind ?

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]