www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - endl. Körper, char(K)=p
endl. Körper, char(K)=p < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

endl. Körper, char(K)=p: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:44 Sa 08.10.2016
Autor: impliziteFunktion

Aufgabe
Es sei $K$ ein endlicher Körper der Charakteristik $p$.

a) Man zeige, dass

[mm] $\sigma: K\to [/mm] K, [mm] x\mapsto x^p$ [/mm]

ein bijektiver Ringhomomorphismus ist.

b) Es sei [mm] $L:=\mathbb{F}_p/(X^p-X-1)$. [/mm] Man zeige, dass $L$ ein Körper ist und bestimme seine Kardinalität.

c) Man zeige, dass [mm] $\sigma^p(\alpha)=\alpha$ [/mm] gilt für alle [mm] $\alpha\in [/mm] L$

Hallo,

ich habe eine Frage zu dieser Aufgabe.

Aufgabenteil a) war einfach.

Zu zeigen ist, dass [mm] $\sigma(a+b)=\sigma(a)+\sigma(b)$ [/mm] und [mm] $\sigma(ab)=\sigma(a)\sigma(b)$. [/mm]

Es ist [mm] $\sigma(a+b)=(a+p)^p=a^p+b^p$, [/mm] da $char(K)=p$.

und [mm] $\sigma(ab)=(ab)^p=a^pb^p=\sigma(a)\sigma(b)$ [/mm]

Um zu zeigen, dass [mm] $\sigma$ [/mm] bijektiv ist, reicht es zu zeigen, dass die Abbildung injektiv ist. Weil $K$ endlich ist, folgt dann bereits die Behauptung.

Der Kern von [mm] $\sigma$ [/mm] ist offensichtlich einelementig mit [mm] $\{0\}$. [/mm]

Zu b):

$L$ ist genau dann ein Körper wenn [mm] $(X^p-X-1)$ [/mm] ein maximales Ideal ist.
Da [mm] $\mathbb{F}_p$ [/mm] ein Körper ist, ist [mm] $\mathbb{F}_p[X]$ [/mm] ein Hauptidealring.
Deshalb ist [mm] $(X^p-X-1)$ [/mm] ein maximales Ideal, denn [mm] $X^p-X-1$ [/mm] ist irreduzibel.

Wie lässt sich die Kardinalität von $L$ bestimmen?


        
Bezug
endl. Körper, char(K)=p: Antwort
Status: (Antwort) fertig Status 
Datum: 11:15 So 09.10.2016
Autor: hippias


> Es sei [mm]K[/mm] ein endlicher Körper der Charakteristik [mm]p[/mm].
>  
> a) Man zeige, dass
>
> [mm]\sigma: K\to K, x\mapsto x^p[/mm]
>  
> ein bijektiver Ringhomomorphismus ist.
>  
> b) Es sei [mm]L:=\mathbb{F}_p/(X^p-X-1)[/mm]. Man zeige, dass [mm]L[/mm] ein
> Körper ist und bestimme seine Kardinalität.
>  
> c) Man zeige, dass [mm]\sigma^p(\alpha)=\alpha[/mm] gilt für alle
> [mm]\alpha\in L[/mm]
>  Hallo,
>  
> ich habe eine Frage zu dieser Aufgabe.
>  
> Aufgabenteil a) war einfach.
>  
> Zu zeigen ist, dass [mm]\sigma(a+b)=\sigma(a)+\sigma(b)[/mm] und
> [mm]\sigma(ab)=\sigma(a)\sigma(b)[/mm].
>  
> Es ist [mm]\sigma(a+b)=(a+p)^p=a^p+b^p[/mm], da [mm]char(K)=p[/mm].
>  
> und [mm]\sigma(ab)=(ab)^p=a^pb^p=\sigma(a)\sigma(b)[/mm]
>  
> Um zu zeigen, dass [mm]\sigma[/mm] bijektiv ist, reicht es zu
> zeigen, dass die Abbildung injektiv ist. Weil [mm]K[/mm] endlich
> ist, folgt dann bereits die Behauptung.
>  
> Der Kern von [mm]\sigma[/mm] ist offensichtlich einelementig mit
> [mm]\{0\}[/mm].

In Ordnung.

>  
> Zu b):
>  
> [mm]L[/mm] ist genau dann ein Körper wenn [mm](X^p-X-1)[/mm] ein maximales
> Ideal ist.
>  Da [mm]\mathbb{F}_p[/mm] ein Körper ist, ist [mm]\mathbb{F}_p[X][/mm] ein
> Hauptidealring.
>  Deshalb ist [mm](X^p-X-1)[/mm] ein maximales Ideal, denn [mm]X^p-X-1[/mm]
> ist irreduzibel.
>  
> Wie lässt sich die Kardinalität von [mm]L[/mm] bestimmen?

Über [mm] $\dim_{\IF_{p}}(L)$... [/mm]

>  


Bezug
                
Bezug
endl. Körper, char(K)=p: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:42 So 09.10.2016
Autor: impliziteFunktion

[mm] $dim_{\mathbb{F}_p}(L)=dim_{\mathbb{F}_p}(\mathbb{F}_p[X]/(X^p-X-1))=dim_{\mathbb{F}_p}(\mathbb{F}_p[X])-dim_{\mathbb{F}_p}((X^p-X-1))$ [/mm]

Wenn man die Dimensionsformeln benutzt.
Und wie kann man die jeweiligen Dimensionen bestimmen?

Bezug
                        
Bezug
endl. Körper, char(K)=p: Antwort
Status: (Antwort) fertig Status 
Datum: 13:33 So 09.10.2016
Autor: felixf

Moin!

> [mm]dim_{\mathbb{F}_p}(L)=dim_{\mathbb{F}_p}(\mathbb{F}_p[X]/(X^p-X-1))=dim_{\mathbb{F}_p}(\mathbb{F}_p[X])-dim_{\mathbb{F}_p}((X^p-X-1))[/mm]
>  
> Wenn man die Dimensionsformeln benutzt.
>  Und wie kann man die jeweiligen Dimensionen bestimmen?

Auf der rechten Seite hast du zweimal [mm] $\infty$ [/mm] stehen. So kommst du also nicht weiter.

Man kann aber ganz allgemein sehr einfach [mm] $\dim_K [/mm] K[X]/(f)$ ausrechnen für $f [mm] \in [/mm] K[X]$, wenn $K$ ein Körper ist. Habt ihr sicher schonmal gehabt. Hat etwas mit [mm] $\deg [/mm] f$ zu tun.

LG Felix


Bezug
                                
Bezug
endl. Körper, char(K)=p: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:48 So 09.10.2016
Autor: impliziteFunktion

Ich bin nochmal das Skript durchgegangen, aber nicht fündig geworden.
Welchen Satz meinst du?

Bezug
                                        
Bezug
endl. Körper, char(K)=p: Antwort
Status: (Antwort) fertig Status 
Datum: 03:41 Di 11.10.2016
Autor: tobit09

Hallo impliziteFunktion!


> Ich bin nochmal das Skript durchgegangen, aber nicht
> fündig geworden.
>  Welchen Satz meinst du?

Vermutlich meint Felix folgenden Satz:

Sei $K$ ein Körper und [mm] $0\not=f\in [/mm] K[X]$. Dann gilt [mm] $\operatorname{dim}_K(K[X]/(f))=\operatorname{deg}(f)$. [/mm]


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]