www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - empirische Varianz
empirische Varianz < Stochastik < Zentralabi NRW < VK Abivorbereitungen < Schule < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

empirische Varianz: Welche Formel?
Status: (Frage) beantwortet Status 
Datum: 09:59 Di 26.08.2008
Autor: AufKriegsfuss

Aufgabe
[mm] s^{2}_{x}=\bruch{1}{n}\summe_{i=1}^{n}(x_{i}-Mittelwert)^2 [/mm]

[mm] s^{2}_{x}=\bruch{1}{n-1}\summe_{i=1}^{n}(x_{i}-Mittelwert)^2 [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Danke für eure raschen Antworten. Jetzt ist einiges klarer.

um die empirische Varianz zu errechnen liegen mir zwei fast identische Formeln vor:

die erste:

[mm] s^{2}_{x}=\bruch{1}{n}\summe_{i=1}^{n}(x_{i}-Mittelwert)^2 [/mm]

und die zweite:

[mm] s^{2}_{x}=\bruch{1}{n-1}\summe_{i=1}^{n}(x_{i}-Mittelwert)^2 [/mm]

Welche Formel müsste ich zur Berechnung von beispielsweise Standardabweichungen verewenden?

Ich habe die ganze Zeit mit der ersten gerechnet und bin dann auf die zweite gestoßen. Welche gibt mir jetz das richtige Ergebnis?

        
Bezug
empirische Varianz: Antwort
Status: (Antwort) fertig Status 
Datum: 10:07 Di 26.08.2008
Autor: Max1603

weißt du was es heißt erwartungstreu zu sein???

wenn du die empirische Varianz mit der zweiten berechnest, ist die dann erwartungstreu.

die erste aber nicht. Die ist aber asymptotisch erwartungstreu

Bezug
        
Bezug
empirische Varianz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:35 Di 26.08.2008
Autor: luis52

Moin AufKriegsfuss,

[willkommenmr]


Ich moechte die korrekten Ausfuehrungen von max1603 ergaenzen.  Fuer
grosse Werte von $n$ unterscheiden sich die die Ergebnisse kaum, so
dass es dann letztendlich egal ist, mit welcher Formel du rechnest.  Im
Gegensatz zu [mm] $s^{2}_{2}=\bruch{1}{n-1}\summe_{i=1}^{n}(x_{i}-\bar x)^2$ [/mm] ist  [mm] $s^{2}_{1}=\bruch{1}{n}\summe_{i=1}^{n}(x_{i}-\bar x)^2 [/mm] $ zwar nicht erwartungstreu,
besitzt aber einen kleineren mittleren quadratischen Fehler.

Der Begriff "Standardabweichung" wird nicht einheitlich verwandt, und
man muss aus dem Zusammenhang sehen, ob [mm] $s_1$ [/mm] oder [mm] $s_2$ [/mm] gemeint ist.
Aus den o.G. Gruenden unterscheiden sich aber beide kaum.

Eine letzte Anmerkungen. [mm] $s^{2}_{2}$ [/mm] ist zwar erwartungstreu fuer
die Varianz [mm] $\operatorname{Var}[X]$, [/mm] jedoch ist [mm] $s_2$ [/mm] i.a. *nicht*
erwartungstreu fuer [mm] $\sqrt{\operatorname{Var}[X]}$. [/mm]


vg Luis              

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]