elektrisches Feld < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:53 Mo 28.04.2008 | Autor: | ONeill |
Aufgabe | Zwei Punktladungen haebn folgende räumliche Anordnung:
Ladung [mm] Q_1=Q [/mm] haben den Ortsvektor [mm] \overrightarrow{r_1}=\vektor{0 \\ -0,5a}, [/mm] Ladung [mm] Q_2=-Q [/mm] haben den Ortsvektor [mm] \overrightarrow{r_2}=\vektor{0 \\ 0,5a}
[/mm]
a.) Berechnen Sie das Elektrische Feld, welches beide Ladungen erzeugen.
b.) Geben Sie das Feld speziell für Orte [mm] \overrightarrow{r}=\vektor{0 \\ y} [/mm] an, für die y>>a ist sowie für Orte [mm] \overrightarrow{r}=\vektor{x \\ 0}, [/mm] für die x>>a ist.
Tipp: Näherung für x>>a
[mm] \bruch{1}{(x^2\pm a^2)^b}=\bruch{1}{(x^2*(1\pm (\bruch{a}{x})^2)^b} [/mm] |
Hallo!
Versuche mich grade an der obigen Aufgabe, mit mehr oder weniger großen Problemen:
a.) [mm] \overrightarrow{E}=\bruch{1}{4*\pi*\epsilon_0}*\bruch{Q_1}{|\overrightarrow{r_0}-\overrightarrow{r_1}|^2}*\bruch{\overrightarrow{r_0}-\overrightarrow{r_1}}{|\overrightarrow{r_0}-\overrightarrow{r_1}|}
[/mm]
Aber was muss ich nun einsetzen...was ist denn [mm] \overrightarrow{r_0} [/mm] überhaupt? [mm] \vektor{0 \\ 0}?
[/mm]
b.) Da hab ich gar keine Ahnung, wie ich da ran gehen soll.
Ihr seht ich stehe hier ziemlich auf dem Schlauch, würde mich sehr über Hilfe freuen.
Danke!
ONeill
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:04 Di 29.04.2008 | Autor: | rainerS |
Hallo ONeill!
> Zwei Punktladungen haebn folgende räumliche Anordnung:
> Ladung [mm]Q_1=Q[/mm] haben den Ortsvektor
> [mm]\overrightarrow{r_1}=\vektor{0 \\ -0,5a},[/mm] Ladung [mm]Q_2=-Q[/mm]
> haben den Ortsvektor [mm]\overrightarrow{r_2}=\vektor{0 \\ 0,5a}[/mm]
>
> a.) Berechnen Sie das Elektrische Feld, welches beide
> Ladungen erzeugen.
> b.) Geben Sie das Feld speziell für Orte
> [mm]\overrightarrow{r}=\vektor{0 \\ y}[/mm] an, für die y>>a ist
> sowie für Orte [mm]\overrightarrow{r}=\vektor{x \\ 0},[/mm] für die
> x>>a ist.
>
> Tipp: Näherung für x>>a
> [mm]\bruch{1}{(x^2\pm a^2)^b}=\bruch{1}{(x^2*(1\pm (\bruch{a}{x})^2)^b}[/mm]
>
> Hallo!
> Versuche mich grade an der obigen Aufgabe, mit mehr oder
> weniger großen Problemen:
>
> a.)
> [mm]\overrightarrow{E}=\bruch{1}{4*\pi*\epsilon_0}*\bruch{Q_1}{|\overrightarrow{r_0}-\overrightarrow{r_1}|^2}*\bruch{\overrightarrow{r_0}-\overrightarrow{r_1}}{|\overrightarrow{r_0}-\overrightarrow{r_1}|}[/mm]
> Aber was muss ich nun einsetzen...was ist denn
> [mm]\overrightarrow{r_0}[/mm] überhaupt? [mm]\vektor{0 \\ 0}?[/mm]
In dieser Gleichung ist der eine Vektor immer der Ortsvektor der Punktladung, der andere der, an dem die Feldstärke berechnet wird; es ist die Feldstärke am Ort [mm] $\vec{r}_0$, [/mm] die von einer Punktladung $Q$ am Ort [mm] $\vec{r}_1$ [/mm] erzeugt wird.
> b.) Da
> hab ich gar keine Ahnung, wie ich da ran gehen soll.
Setze erst einmal ein, benutze die Näherung im Tipp und die geometrische Reihe.
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 00:26 Di 29.04.2008 | Autor: | ONeill |
Hallo Reiner!
Das stell ich dann ganz allgemein auf, für einen beliebigen Punkt im Raum? Also bleibt [mm] r_0, [/mm] eine "Variable" die ich einfach mal so stehen lasse?
Dann also:
[mm] \overrightarrow{E}=\bruch{1}{4\cdot{}\pi\cdot{}\epsilon_0}\cdot{}\bruch{+Q}{|\overrightarrow{r_0}-\vektor{0 \\-0,5*a}|^2}\cdot{}\bruch{\overrightarrow{r_0}-\vektor{0 \\-0,5*a}}{|\overrightarrow{r_0}-\vektor{0 \\-0,5*a}|} +\bruch{1}{4\cdot{}\pi\cdot{}\epsilon_0}\cdot{}\bruch{-Q}{|\overrightarrow{r_0}-\vektor{0 \\ 0,5a}|^2}\cdot{}\bruch{\overrightarrow{r_0}-\vektor{0 \\ 0,5a}}{|\overrightarrow{r_0}-\vektor{0 \\ 0,5a}|} [/mm]
Das kann man dann sicher noch etwas zusammenfassen.
Ist das so richtig?
Den Rest werd ich mir dann noch mal "in Ruhe" ansehen.
Danke für deine Mühe!
Gruß ONeill
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 02:25 Di 29.04.2008 | Autor: | rainerS |
Hallo ONeill!
> Das stell ich dann ganz allgemein auf, für einen
> beliebigen Punkt im Raum? Also bleibt [mm]r_0,[/mm] eine "Variable"
> die ich einfach mal so stehen lasse?
> Dann also:
>
> [mm]\overrightarrow{E}=\bruch{1}{4\cdot{}\pi\cdot{}\epsilon_0}\cdot{}\bruch{+Q}{|\overrightarrow{r_0}-\vektor{0 \\-0,5*a}|^2}\cdot{}\bruch{\overrightarrow{r_0}-\vektor{0 \\-0,5*a}}{|\overrightarrow{r_0}-\vektor{0 \\-0,5*a}|} +\bruch{1}{4\cdot{}\pi\cdot{}\epsilon_0}\cdot{}\bruch{-Q}{|\overrightarrow{r_0}-\vektor{0 \\ 0,5a}|^2}\cdot{}\bruch{\overrightarrow{r_0}-\vektor{0 \\ 0,5a}}{|\overrightarrow{r_0}-\vektor{0 \\ 0,5a}|}[/mm]
> Das kann man dann sicher noch etwas zusammenfassen.
Nicht wirklich.
> Den Rest werd ich mir dann noch mal "in Ruhe" ansehen.
Beachte dabei, dass der Bruch
[mm] \bruch{\overrightarrow{r_0}-\vektor{0 \\-0,5*a}}{|\overrightarrow{r_0}-\vektor{0 \\-0,5*a}|} [/mm]
ein Einheitsvektor entlang der Verbindungslinie zwischen Ort der Ladung und [mm] $\vec{r}_0$ [/mm] ist, also nur von der Richtung, aber nicht vom Abstand abhängt.
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:47 Di 29.04.2008 | Autor: | ONeill |
Hallo Rainer!
Vielen vielen Dank für deine Mühe! Ich denke ich habe nun vernünftige Ergebnisse erhalten. Wünsch dir noch nen schönen Abend!
Gruß ONeill
|
|
|
|