www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - elektr. feld einer hohlkugel
elektr. feld einer hohlkugel < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

elektr. feld einer hohlkugel: Frage
Status: (Frage) beantwortet Status 
Datum: 20:48 Do 14.04.2005
Autor: fretchen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


ich habe die folgende aufgabe gekriegt:
Man berechne das elektr. Feld einer Kugelschale(innerer radius Ri, äußerer Radius Ra, Raumladungsdichte Rho(r)=a*r, für Ri<r>Ra mit a=const.)
So jetzt weiß ich dass
im Punkt R das Feld

[mm] E(R)=\integral_{V} \frac{ar}{4\pi \varepsilon_{0} (|R-r|)^{2}}dv \vec{e_{r}} [/mm]

wie jetzt weiter mit dem raumintegral?
also ich komme halt mit dem vektoren hier nicht zurecht


        
Bezug
elektr. feld einer hohlkugel: Kugelkooerdinaten!
Status: (Antwort) fertig Status 
Datum: 21:58 Do 14.04.2005
Autor: leduart

Hallo
dV [mm] =r^{2}*sin\teta*dr *d\phi*d\teta [/mm]
r von [mm] R_{i} [/mm] bis R, [mm] \phi [/mm] von 0 bis [mm] 2\pi [/mm] ; [mm] \teta [/mm] von 0 bis [mm] \pi [/mm]
Braucht man bei allen Kugelberechnungen!
Gruss leduart

Bezug
                
Bezug
elektr. feld einer hohlkugel: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:15 Fr 15.04.2005
Autor: fretchen

das ist mir ja schon klar, ich komme halt bei der eigentlichen integration nicht weiter, da ich hier irgendwelche vektoren drinne habe die sich so komisch verhalten, wenn ich das richtig sehe.
ich habe ja R, den vektor vom ursprung vom Ort im Feld und r, den vektor zum  ort der ladung, jetzt werden die verknüpft und dann entsteht ein sehr ungemütliches integral oder?

Bezug
                        
Bezug
elektr. feld einer hohlkugel: keine Vektoren im Integral!
Status: (Antwort) fertig Status 
Datum: 20:05 So 17.04.2005
Autor: leduart

Hallo


> das ist mir ja schon klar, ich komme halt bei der
> eigentlichen integration nicht weiter, da ich hier
> irgendwelche vektoren drinne habe die sich so komisch
> verhalten, wenn ich das richtig sehe.
>  ich habe ja R, den vektor vom ursprung vom Ort im Feld und
> r, den vektor zum  ort der ladung, jetzt werden die
> verknüpft und dann entsteht ein sehr ungemütliches integral
> oder?

Ja, mit den Vektoradditionen wird es recht kompliziert. Wenn du deine Formel nicht benutzen musst, solltest du das Potential in Abhängigkeit von R berechnen, da sich Potentiale einfach addieren. Wenn man das für eine dünne Hohlkugel ausführt, findet man, dass es dasselbe ist, als wenn die Gesamtladung der Hohlkugel im Mittelpunkt läge, Danach mußt du nur noch die GesamtLadung deiner dicken Hohlkugel berechnen und bist fertig. (Da das potential kugelsymetrisch rauskommt ist
[mm] \vec{E}(R)= \bruch{dV}{dR}* \vec{e_{R}} [/mm]
Hilft dir das, sonst überleg ich noch mal weiter!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]