www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - eingeschlossene Fläche berechn
eingeschlossene Fläche berechn < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

eingeschlossene Fläche berechn: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:09 Do 23.01.2014
Autor: uli001

Aufgabe
Bestimmen Sie den Inhalt der Fläche, die von der y-Achse, dem Graphen der unktion f(x) = 2x³-1/2x²+6x-16 und der Geraden g= -x12 eingeschlossen wird.

Hallo zusammen,

bei oben genannter Aufgabe ist die eingeschlossene Fläche zu berechnen. Einen Schnittpunkt habe ich schon ausgerechnet (2/10) und mir das Ganze mal aufskizziert. Nun ergibt sich ja eine Fläche, die rechts der y-Achse und ober- sowie unterhalb der x-Achse liegt. Wäre es jetzt richtig wenn ich die Fläche berechne, indem ich f(x)-g(x) im Integral 0 bis 2 berechne? Oder muss ich da Teilintervalle wählen, indem ich mir zuerst den Schnittpunkt mit der x-Achse ausrechne?

Danke für euren Tipp!
VG

        
Bezug
eingeschlossene Fläche berechn: Antwort
Status: (Antwort) fertig Status 
Datum: 11:19 Do 23.01.2014
Autor: M.Rex

Hallo

> Bestimmen Sie den Inhalt der Fläche, die von der y-Achse,
> dem Graphen der unktion f(x) = 2x³-1/2x²+6x-16 und der
> Geraden g= -x12 eingeschlossen wird.

g soll wahrscheinlich g(x)=-x+12 lauten, dann passt auch der Schnittpunkt P

[Dateianhang nicht öffentlich]

> Hallo zusammen,

>

> bei oben genannter Aufgabe ist die eingeschlossene Fläche
> zu berechnen. Einen Schnittpunkt habe ich schon
> ausgerechnet (2/10) und mir das Ganze mal aufskizziert. Nun
> ergibt sich ja eine Fläche, die rechts der y-Achse und
> ober- sowie unterhalb der x-Achse liegt. Wäre es jetzt
> richtig wenn ich die Fläche berechne, indem ich f(x)-g(x)
> im Integral 0 bis 2 berechne?

Das ist genau der Weg, berechne

[mm] \int\limits_{0}^{2}[(-x+12)-(2x³-0,5x²+6x-16)]dx [/mm]

Damit berechnest du die blaue Fläche:



> Oder muss ich da
> Teilintervalle wählen, indem ich mir zuerst den
> Schnittpunkt mit der x-Achse ausrechne?

Wozu?

>

> Danke für euren Tipp!
> VG

Marius

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
eingeschlossene Fläche berechn: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:23 Do 23.01.2014
Autor: uli001

Vielen Dank!!! Dann mache ich mich mal ans ausrechnen *jippie*

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]