www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - einfache Gruppen
einfache Gruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

einfache Gruppen: Normalteiler
Status: (Frage) überfällig Status 
Datum: 21:19 Sa 05.01.2008
Autor: jumape

Aufgabe
Sei G eine endliche Gruppe. Für eine Primzahl p sei [mm] m_p [/mm] die zahl der p-Sylowuntergruppen. Man nennt G eine einfache Gruppe wenn die einzigen Normalteiler von G die Untergruppen G und {e} sind.

(a) angenommen [mm] lGl=p^r. [/mm]
(b) Angenommen lGl=p^ra mit 1<a<p und [mm] r\ge [/mm] 1.
(c) ANgenommen lGl=12
Zeige für a,b,c: G ist nicht einfach.
HInweis:
zeige, dass entweder [mm] m_2=1, [/mm] und damit die 2-Sylow..., oder aber [mm] m_2=3. [/mm] Zeige: [mm] m_2=3 \Rightarrow \exists \pi: G\to S_3. [/mm] zeige: Kern [mm] \pi \not= [/mm] {e}, G also hat G...
(d) Zeige: Ist [mm] 1

Ich komme damit irgendwie nicht klar, ich bin mir ziemlich sicher dass man dafür die Sylowsätze braucht, aber wie man das dann macht ist mir nicht ganz klar oder habe ich einfach einen vergessen:
1. Wenn die Ordnung einer Gruppe von einer Primzahl p geteilt wird, gibt es eine Untergruppe der Ordung, der größten Potenz der Primzahl die die Gruppenordnung teilt. Diese Untergruppe heißt p-Sylowuntergruppe.
2.Alle Sylowuntergruppen sind konjugiert zueinander.
3.  jede Teilmenge von G deren Ordnung eine Potenz von p ist ist Teilmenge einer p-Sylowuntergruppe von G.
4. [mm] m_p [/mm] teilt [mm] \bruch{lGl}{p^r} [/mm] und [mm] m_p\equiv1modp [/mm]

Für Normalteiler gilt:
[mm] gHg^{invers}=H [/mm]

Fehlt mir da vielleicht eine entscheidene Information über Normalteiler und Sylowsätze, oder wende ich die einfach nicht richtig an?

        
Bezug
einfache Gruppen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:22 Mo 07.01.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]