www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - eindeutig, Erzeugendensystem
eindeutig, Erzeugendensystem < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

eindeutig, Erzeugendensystem: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:54 Sa 17.11.2012
Autor: Lu-

Aufgabe
Es seien G ein H Gruppen, M [mm] \subseteq [/mm] G sei ein Erzeugendensystem von G mit [mm] \phi [/mm] : G->H ein Homomorphismus. Beweisen Sie, dass [mm] \phi [/mm] durch die Werte [mm] \phi(x) [/mm] mit x [mm] \in [/mm] M eindeutig bestimmt ist.

hallo
Die Aufgabe an sich ist ja logisch, aber ich habe leider keine Ahnung wie ich den beweis dafür aufbaue....
Ich hab bei der AUfgabe richtig ein Holz vorm Kopf .
Vlt könnt ihr mir da einen Tipp geben, wie ich einsteige in die Aufgabe.

Vielen Dank!

        
Bezug
eindeutig, Erzeugendensystem: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 Sa 17.11.2012
Autor: tobit09

Hallo Lu,


>  Die Aufgabe an sich ist ja logisch, aber ich habe leider
> keine Ahnung wie ich den beweis dafür aufbaue....
>  Ich hab bei der AUfgabe richtig ein Holz vorm Kopf .
>  Vlt könnt ihr mir da einen Tipp geben, wie ich einsteige
> in die Aufgabe.

Wie habt ihr "Erzeugendensystem" einer Gruppe definiert?


Viele Grüße
Tobias

Bezug
                
Bezug
eindeutig, Erzeugendensystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:21 Sa 17.11.2012
Autor: Lu-

Sei G eine Gruppe und [mm] M\subseteq [/mm] G. Dann heißt <M> = [mm] \bigcap_{M \subseteq H , H \le G}H [/mm] die von M erzeugte Untergruppe von G. Gilt <M> =G so sagt man, G werde von M erzeugt und nennt M ein Erzeugendensytem von G.
Ist M endlich d.h. [mm] \exists a_1 [/mm] ,.., [mm] x_n \in [/mm] G : M [mm] =\{a_1,..,a_n\} [/mm] so schreibt man auch [mm] [/mm] statt <M>
Satz: Sei G eine Gruppe und M [mm] \subseteq [/mm] G , M [mm] \not= \{ \} [/mm] . Dann gilt
<M> = [mm] \{ a_1^{\epsilon_1} *...*a_n^{\epsilon_n} | , n \ge 0, a_1,.., a_n \in M. \epsilon_1,.., \epsilon_n \in \{1, -1\}\} [/mm]


Mein Versuch:
elisabet nicht
Es sei  x [mm] \in [/mm]  G beliebig. Da M Erzeugendensystem von G ist (<M>=G), gibt es eine Darstellung

    v =  [mm] a_1^{\epsilon_1} *..*a_n^{\epsilon_n} [/mm]
mit  [mm] a_1,.., a_n \in [/mm] M. [mm] \epsilon_1,.., \epsilon_n \in \{1, -1\} [/mm]

Da [mm] \phi [/mm] ein Homomorphismus ist, muss für die Abbildung gelten

     [mm] \varphi( [/mm] v) = [mm] \varphi [/mm] ( [mm] a_1^{\epsilon_1} *..*a_n^{\epsilon_n} [/mm] ) = [mm] \varphi(a_1^{\epsilon_1}) [/mm] +..+ [mm] \varphi(a_n^{\epsilon_n}) [/mm]


Bezug
                        
Bezug
eindeutig, Erzeugendensystem: Antwort
Status: (Antwort) fertig Status 
Datum: 17:31 Sa 17.11.2012
Autor: tobit09

Das sieht gut aus! [ok] Du bist fast fertig.


> Mein Versuch:
>  Es sei  x [mm]\in[/mm]  G beliebig. Da M Erzeugendensystem von G
> ist (<M>=G), gibt es eine Darstellung
>  
> v x =  [mm]a_1^{\epsilon_1} *..*a_n^{\epsilon_n}[/mm]
>  mit  [mm]a_1,.., a_n \in[/mm]
> M. [mm]\epsilon_1,.., \epsilon_n \in \{1, -1\}[/mm]
>
> Da [mm]\phi[/mm] ein Homomorphismus ist, muss für die Abbildung
> gelten
>  
> [mm]\varphi([/mm] v) = [mm]\varphi[/mm] ( [mm]a_1^{\epsilon_1} *..*a_n^{\epsilon_n}[/mm]
> ) = [mm]\varphi(a_1^{\epsilon_1})[/mm] +..+
> [mm]\varphi(a_n^{\epsilon_n})[/mm]

[mm] $=\varphi(a_1)^{\epsilon_1}*\ldots*\varphi(a_n)^{\epsilon_n}$. [/mm]

Dabei sind [mm] $\epsilon_1,\ldots,\epsilon_n$ [/mm] nur von x und nicht von [mm] $\varphi$ [/mm] abhängig.

Somit ist [mm] $\varphi(x)$ [/mm] durch [mm] $\varphi(a_1),\ldots,\varphi(a_n)$ [/mm] eindeutig bestimmt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]