www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - e-Funktion aufleiten
e-Funktion aufleiten < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

e-Funktion aufleiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 Mi 13.04.2005
Autor: Torsten-BB

Hallo,

ich stehe grad ein bisschen auf dem Schlauch was eine Aufleitung einer e-Funktion angeht.

Die Funktion heißt:
[mm] e^{0,25*x}-e [/mm]  

Ich komme hierbei auf keine vernümpftige Aufleitung... wer kann helfen?!

Grüße
Torsten

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
e-Funktion aufleiten: Antwort
Status: (Antwort) fertig Status 
Datum: 18:20 Mi 13.04.2005
Autor: Zwerglein

Hi, Torsten,

sag' lieber "integrieren" statt "aufleiten"!
Wer auch immer dieses seltsame Wort erfunden hat - Mathematiker war das keiner!

Zur Aufgabe:
  

> Die Funktion heißt:
>  [mm]e^{0,25*x}-e[/mm]  

Der Funktionsterm ist vom Typ f(x) = [mm] e^{k*x} [/mm] - Konstante.

Wie man eine Konstante integriert, ist klar:
Multipliziere mit der Variablen: Konstante*x.

Für den Exponentialteil gilt die wichtige Formel (die letztlich auf einer linearen Substitution z=k*x beruht):

[mm] \integral{e^{k*x}dx} [/mm] = [mm] \bruch{1}{k}*e^{k*x} [/mm] + c.

Somit ist Dein Integral folgendermaßen zu berechnen:

[mm] \integral{(e^{0,25*x} - e)dx} [/mm] = [mm] 4*e^{0,25x} [/mm] - e*x + c.

(Nachdenken, nachrechnen, kapieren!)

Bezug
                
Bezug
e-Funktion aufleiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:44 Mi 13.04.2005
Autor: Torsten-BB

Danke für deine schnelle Antwort...

um ehrlich zu sein hatte ich zuerst auch die Lösung raus.

Ich komme aber beim Flächenberechnen mit dieser auflei... ähh integration nicht auf das gesucht Ergebnis

[mm] \integral_{0}^{4} {e^{0,25*e}-e dx} [/mm]

Ich komme mit der o.g. integration auf 1,718FE. Rauskommen muss aber lt. Taschenrechner 4FE.


Bezug
                        
Bezug
e-Funktion aufleiten: Grenzen einsetzen ...
Status: (Antwort) fertig Status 
Datum: 19:02 Mi 13.04.2005
Autor: Loddar

Hallo Torsten!

(Hmm - ohne "h" schreibe ich den Namen niiiee ... ;-)  )



> [mm]\integral_{0}^{4} {e^{0,25*e}-e dx}[/mm]

Das soll ja bestimmt heißen:

[mm]\integral_{0}^{4} {e^{0,25*\red{x}}-e \ dx}[/mm]


> Ich komme mit der o.g. integration auf 1,718FE. Rauskommen
> muss aber lt. Taschenrechner 4FE.

Sowohl mein Taschenrechner als auch meine "Handrechnung" ergeben ebenfalls $A \ = \ -4 \ [F.E.]$

Über die Stammfunktion hast Du Dich ja bereits mit Zwerglein geeinigt, oder?



Da brauchen wir doch "nur noch" die Grenzen einsetzen:

[mm]\integral_{0}^{4} {e^{0,25*x}-e \ dx} \ = \ \left[4*e^{0,25*x} - e*x \right]_0^4 \ = \ \left(4*e^{0,25*4} - e*4\right) - \left(4*e^{0,25*0} - e*0\right) \ = \ \left(4*e^1 - e*4\right) - \left(4*e^{0} - 0\right) \ = \ 4*e - 4*e - 4*1 \ = \ 0 - 4 \ = \ -4 \ [F.E.][/mm]

Das Minuszeichen vor der 4 gibt an, daß die Fläche unterhalb der x-Achse liegt.


Hast Du Deinen Fehler entdeckt?

Gruß
Loddar


Bezug
                                
Bezug
e-Funktion aufleiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:29 Mi 13.04.2005
Autor: Torsten-BB

Ahhh... ich Depp! Ich hab die 4 in der integration ebenfalls 0 gesetzt. (Flüchtigkeitsfehler... erst die Grenzen zu 4 ausgerechnet und dann aus allen vieren einfach nullen gemacht.

Also danke nochmal für eure schnelle Hilfe!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]