www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - e-Funktion
e-Funktion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:15 So 19.11.2006
Autor: Kruemelz

Aufgabe
Diskussion der Funktion f(x)=e^-x * (x²+3x+3)

Hallo,

habe die Ableitungen bestimmt: f'(x)=e^-x (-x²-x) und f''(x)=e^-x(x²-x-1) und dann versucht Nullstellen und Extrempunkte zu bestimmen.
Bekomme aber in beiden Fällen negative Diskriminanten. Ist das so richtig oder habe ich mich schon bei den Ableitungen verrechnet.
Wär super, wenn mir jemand nen Tipp geben könnte...
MfG Anne!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:03 So 19.11.2006
Autor: Event_Horizon

Auch, wenn die e-Funktion bei der Ableitung sich selbst ergibt, das ist trotzdem ein Produkt.

Und da gilt: (uv)'=u'v+uv'

Nimm also

$u= [mm] e^{-x}$ [/mm]
$v=x²+3x+3$

Dann bekommst du die richtigen Ableitungen heraus.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]