www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - diskrete/stetige Verteilungen
diskrete/stetige Verteilungen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

diskrete/stetige Verteilungen: Unterschied
Status: (Frage) beantwortet Status 
Datum: 18:45 So 25.10.2009
Autor: oeli1985

Aufgabe
Wo liegt der Unterschied zwischen den diskreten und den stetigen Verteilungen?

Hallo zusammen,
ich bereite mich gerade auf meine Staatsexamen vor und versuche dazu typische Prüfungsfragen zu beantworten. Dabei haben mir einige wenige doch noch Probleme bereitet.

Die oben aufgeführte gehört zu diesen.

Ich weiß natürlich, dass diskrete Verteilungen direkt über das Wahrscheinlichkeitsmaß stetige Verteilungen indirekt über die Dichte definiert werden.

Folglich lässt sich im Fall der stetigen Verteilungen die Wahrscheinlichkeit dafür, dass eine Zufallsvariable innerhalb eines bestimmten Intervalls liegt "integrieren".

Dementsprechend bestünde meines Erachtens formal auch ein Unterschied darin, dass man im Fall der diskreten Verteilungen die Wahrscheinlichkeiten von Ergebnissen und Ereignissen als Mengen und im Fall der stetigen Verteilungen als Punkte und Intervalle berechnet.

Allerdings scheinen mir diese Unterschiede nicht die wirklich bezeichnenden zu sein!?

Wäre nett, wenn mir jemand weiterhelfen könnte (sowohl "formal als auch praktisch")). Danke schon mal im Voraus und viele Grüße


Patrick

        
Bezug
diskrete/stetige Verteilungen: Verteilungen
Status: (Antwort) fertig Status 
Datum: 11:00 So 01.11.2009
Autor: Infinit

Hallo patrick,
eine Sache hast Du schon erkannt, nämlich, dass die Charakteristik der Verteilungen unterschiedlich ist. Zu einer diskreten Verteilung gehören auch immer diskrete Ereignisse und da liegt ein typischer Unterschied zwischen stetigen und diskreten Verteilungen.
Die Wahrscheinlichkeitsdichtefunktion einer diskreten Verteilung wird durch Diracfunktionen beschrieben, wohingegen man bei stetiger Verteilung eine stetige Funktion besitzt.
Das bedeutet für die Verteilungsfunktion, dass diese bei einer diskreten Verteilung Sprünge aufweist, was bei einer stetigen Verteilung nicht der Fall ist.
Hieraus folgt auch, dass bei einer diskreten Verteilung, die Wahrscheinlichkeit, dass ein bestimmtes Ereignis auftritt, von Null verschieden ist, sobald durch die Zufallsvariable an dieser Stelle ein Wert definiert ist, oder anders augedrückt:
$$ P(x = [mm] x_i) [/mm] = [mm] P_x (x_i)\, [/mm] . $$
So etwas gibt es bei einer stetigen Verteilung nicht, da Du Ober- und Intergrenze des Integrals gleich sind und demzufolge dann gilt:
$$ P(x = [mm] x_i) [/mm] = 0 [mm] \, [/mm] . $$
Zur Bestimmung der Wahrscheinlichkeit eines Ereignisses bei einer diskreten Verteilung geht die Integration in eine Summation über.
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]