www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - diskrete Verteilungen Urne
diskrete Verteilungen Urne < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

diskrete Verteilungen Urne: Frage
Status: (Frage) beantwortet Status 
Datum: 14:36 So 17.04.2005
Autor: gerry

Ich habe in einer Urne 40 Kugeln, 6 rote, 12 blaue, 10 grüne und 12 gelbe.

1. Ich entnehme eine Stichprobe z.B. n=5 ohne Zurücklegen und Beachtung der Reihenfolge.

Frage: Mit welcher Wahrscheinlichkeit ist 1 rote, 1 blaue und mindestens 2 grüne Kugeln im Stichprobenumfang.

2. Ich führe 100 Versuche durch, dabei müssen 95 Versuche genau die Bedingungen der oben genannten Frage erfüllen, wie groß müsste der Stichpobenumfang n werden, um diese Bedingung zu erfüllen ?

Habe bereits herausgefunden das es sich um eine mehrdimensionale diskrete Verteilung handelt (? Hypergeometrische Verteilung) Nur wie man nun die Berechnungen durchführt ? und mit welcher Formel ?

Ich habe diese Frage noch in keinem Forum auf anderen Internetseiten gestellt.

Danke im voraus für diverse Lösungsansätze

Gerry




        
Bezug
diskrete Verteilungen Urne: Antwort
Status: (Antwort) fertig Status 
Datum: 22:27 So 17.04.2005
Autor: Brigitte

Hallo Gerry!

[willkommenmr]

> Ich habe in einer Urne 40 Kugeln, 6 rote, 12 blaue, 10
> grüne und 12 gelbe.
>  
> 1. Ich entnehme eine Stichprobe z.B. n=5 ohne Zurücklegen
> und Beachtung der Reihenfolge.
>  
> Frage: Mit welcher Wahrscheinlichkeit ist 1 rote, 1 blaue
> und mindestens 2 grüne Kugeln im Stichprobenumfang.

Das gliedert sich bei n=5 in zwei Ereignisse, nämlich
A: 1 rote, 1 blaue, 2 grüne, 1 gelbe
B: 1 rote, 1 blaue, 3 grüne, 0 gelbe

Man berechnet das nun vom Prinzip her wie beim Lotto. Insgesamt gibt es [mm] ${40\choose 5}$ [/mm] Möglichkeiten der Entnahme von 5 Kugeln. Nun zählt man noch die günstigen Möglichkeiten:
[mm] ${6\choose 1}$ [/mm] Möglichkeiten für rot, [mm] ${12\choose 1}$ [/mm] für blau, [mm] ${10\choose 2}$ [/mm] grün und [mm] ${12\choose 1}$ [/mm]  für gelb. Also folgt

[mm]P(A)=\frac{{6\choose 1}\cdot{12\choose 1}\cdot{10\choose 2}\cdot {12\choose 1}}{{40\choose 5}}[/mm]

Wenn Du nun noch P(B) berechnest, ergibt sich die gesuchte WKt. durch P(A)+P(B).

> 2. Ich führe 100 Versuche durch, dabei müssen 95 Versuche
> genau die Bedingungen der oben genannten Frage erfüllen,
> wie groß müsste der Stichpobenumfang n werden, um diese
> Bedingung zu erfüllen ?

Also diese Fragestellung ist mir unklar. Man kann niemals garantieren, dass genau 95 der 100 Versuche einen bestimmten Ausgang haben, denn es ist ja ein Zufallsexperiment. Man könnte höchstens fragen, wie groß n sein muss, damit obiges Ereignis mit einer Wkt. von 95% auftritt. Aber auch hier fällt mir kein Ansatz ein, wie man n direkt berechnen könnte. Ich würde es mit Ausprobieren versuchen. Wenn Du Ergebnisse für ein paar Werte von n hast, bekommt man vielleicht ein Gefühl dafür, wo man suchen muss.

  

> Habe bereits herausgefunden das es sich um eine
> mehrdimensionale diskrete Verteilung handelt (?
> Hypergeometrische Verteilung) Nur wie man nun die
> Berechnungen durchführt ? und mit welcher Formel ?

Ehrlich gesagt weiß ich gar nicht genau, wie man diese Verteilung nennt. Vielleicht mehrdimensionale hypergeometrische Verteilung, OK. Eine Formel für den zweidimensionalen Fall findest Du in jedem halbwegs guten Buch über Wahrscheinlichkeitsrechnung. Der mehrdimensionale Fall lässt sich daraus leicht ableiten. Tipp: die Summe der oberen Zahlen in den Binomialkoeffizienten des Zählers ergibt die obere Zahl des Binomialkoeffizienten im Nenner; für die unteren Zahlen gilt dasselbe.

Viele Grüße
Brigitte


Bezug
        
Bezug
diskrete Verteilungen Urne: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 22:23 Mo 18.04.2005
Autor: gerry

Ich habe in einer Urne 40 Kugeln, 6 rote, 12 blaue, 10 grüne und 12 gelbe.

1. Ich entnehme eine Stichprobe z.B. n=5 ohne Zurücklegen und Beachtung der Reihenfolge.

Frage: Mit welcher Wahrscheinlichkeit ist 1 rote, 1 blaue und mindestens 2 grüne Kugeln im Stichprobenumfang.

2. Ich führe 100 Versuche durch, dabei müssen 95 Versuche genau die Bedingungen der oben genannten Frage erfüllen, wie groß müsste der Stichpobenumfang n werden, um diese Bedingung zu erfüllen ?

Habe bereits herausgefunden das es sich um eine mehrdimensionale diskrete Verteilung handelt (? Hypergeometrische Verteilung) Nur wie man nun die Berechnungen durchführt ? und mit welcher Formel ?

Ich habe diese Frage noch in keinem Forum auf anderen Internetseiten gestellt.

Danke im voraus für diverse Lösungsansätze

Gerry


> Ich habe in einer Urne 40 Kugeln, 6 rote, 12 blaue, 10
> grüne und 12 gelbe.
>  
> 1. Ich entnehme eine Stichprobe z.B. n=5 ohne Zurücklegen
> und Beachtung der Reihenfolge.
>  
> Frage: Mit welcher Wahrscheinlichkeit ist 1 rote, 1 blaue
> und mindestens 2 grüne Kugeln im Stichprobenumfang.
>  
> 2. Ich führe 100 Versuche durch, dabei müssen 95 Versuche
> genau die Bedingungen der oben genannten Frage erfüllen,
> wie groß müsste der Stichpobenumfang n werden, um diese
> Bedingung zu erfüllen ?
>  
> Habe bereits herausgefunden das es sich um eine
> mehrdimensionale diskrete Verteilung handelt (?
> Hypergeometrische Verteilung) Nur wie man nun die
> Berechnungen durchführt ? und mit welcher Formel ?
>  
> Ich habe diese Frage noch in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Danke im voraus für diverse Lösungsansätze
>
> Gerry
>  
> Sofern ich dann 6 Kugeln ziehen möchte, wären dann die günstigen Möglichkeiten in drei Lösungen anzuschreiben:

1 rot, 1 blau, 2 grün und 2 gelb

1 rot, 1 blau, 3 grün und 1 gelb

1 rot, 1 blau, 4 grün und 0 gelb

Grüße Gerry

>  


Bezug
                
Bezug
diskrete Verteilungen Urne: Antwort
Status: (Antwort) fertig Status 
Datum: 23:02 Mo 18.04.2005
Autor: Brigitte

Hallo Gerry!

> Sofern ich dann 6 Kugeln ziehen möchte, wären dann die
> günstigen Möglichkeiten in drei Lösungen anzuschreiben:
>  
> 1 rot, 1 blau, 2 grün und 2 gelb
>  
> 1 rot, 1 blau, 3 grün und 1 gelb
>  
> 1 rot, 1 blau, 4 grün und 0 gelb

Genau so ist es. Die Summe wird mit wachsendem n immer größer. Deshalb sehe ich auch nicht, wie man da was nach n auflösen könnte. Aber vielleicht hat ja jemand anderes noch eine zündende Idee.

Viele Grüße
Brigitte

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]