www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - direk Summe Eigenräume
direk Summe Eigenräume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

direk Summe Eigenräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:12 Mo 14.05.2007
Autor: AriR

hey leute,

in dem beweis, dass die summe der eigenräume direkt ist wird folgendes gemacht:

man betrachtet die summe [mm] \summe v_i [/mm] mit [mm] v_i\in\lambda_i, [/mm] wobei [mm] \lambda_i [/mm] der i-te EW ist.
dann wird gesagt, da die [mm] v_i [/mm] EV zu verschiedenen EV sind, ist die summe direkt.

das wäre ja auch ok, wenn jeder eigenraum die dimension 1 hätte aber was ist wenn man auch einen eigenraum der dim 2 hat?

dann kann es doch sein, dass man für manche eigenräume mehr als nur einen vektor [mm] v_i [/mm] betrachten muss.

ich hoffe ihr versteht ca was ich meine.

gruß ari :)

        
Bezug
direk Summe Eigenräume: Antwort
Status: (Antwort) fertig Status 
Datum: 12:50 Mo 14.05.2007
Autor: statler

Hey!

> man betrachtet die summe [mm]\summe v_i[/mm] mit [mm]v_i\in\lambda_i,[/mm]
> wobei [mm]\lambda_i[/mm] der i-te EW ist.
>  dann wird gesagt, da die [mm]v_i[/mm] EV zu verschiedenen EV sind,
> ist die summe direkt.
>  
> das wäre ja auch ok, wenn jeder eigenraum die dimension 1
> hätte aber was ist wenn man auch einen eigenraum der dim 2
> hat?

Die Dimensionen der Eigenräume spielen doch für deinen Beweis gar keine Rolle. Wenn v im Durchschnitt zweier Eigenräume (zu [mm] \lambda_{1} [/mm] und [mm] \lambda_{2}) [/mm] liegt, dann ist [mm] \lambda_{1}\*v [/mm] = Av = [mm] \lambda_{2}\*v [/mm] und damit v = 0. Also ist die Summe jedenfalls direkt.

> dann kann es doch sein, dass man für manche eigenräume mehr
> als nur einen vektor [mm]v_i[/mm] betrachten muss.

Nee. Du betrachtest für je 2 Eigenräume einen Vektor aus dem Durchschnitt.

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
direk Summe Eigenräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:02 Mo 14.05.2007
Autor: AriR

asoo danke

ich bin irgendwie davon ausgegangen, dass die [mm] v_i [/mm] basisvektoren sind. ka warum :D

gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]