differenzierbare Funktionen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Gibt es auf jeder differenzierbaren MF M eine differenzierbare Funktion
$f: M [mm] \mapsto [/mm] R$ |
Hallo,
ich muss gestehen, dass ich mir noch nicht ganz sicher bin, ob die Aussage wahr oder falsch ist. Zunächst habe ich mir überlegt, dass die Aussage für eine d- dimensionale differenzierbare eingebettete MF eigentlich gelten müsste, da das d dimensionale Volumen differenzierbar sein sollte.
Lässt sich das vielleicht sogar allgemein sagen?
Oder gibt es ein Gegenbeispiel?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:15 Mo 30.11.2009 | Autor: | pelzig |
> ich muss gestehen, dass ich mir noch nicht ganz sicher bin,
> ob die Aussage wahr oder falsch ist. Zunächst habe ich mir
> überlegt, dass die Aussage für eine d- dimensionale
> differenzierbare eingebettete MF eigentlich gelten müsste,
> da das d dimensionale Volumen differenzierbar sein sollte.
Ich versteh gar nicht was du damit meinst. Gefragt ist nach Abbildungen von M nach [mm] $\IR$, [/mm] d.h. jedem Punkt [mm]p\in M[/mm] soll eine reelle Zahl $f(p)$ zugeordnet werden. Was soll das d-dimensionale Volumen in einem Punkt sein?
Es geht doch viel einfacher: Jede konstante Funktion von M nach [mm] $\IR$ [/mm] ist glatt, denn die Darstellung in lokalen Koordinaten ist ne konstante Funktion von einer offenen Menge [mm] $U\subset\IR^d$ [/mm] nach [mm] $\IR$...
[/mm]
Gruß, Robert
|
|
|
|