www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - differentialrechnung
differentialrechnung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

differentialrechnung: tipp
Status: (Frage) beantwortet Status 
Datum: 12:45 Sa 14.07.2007
Autor: bjoern.g

Aufgabe
Bestimmen Sie, für welche x € R die Funktion [mm] tan(e^{−x²} [/mm] ) differenzierbar ist. Kann diese
Funktion lokale Extremstellen haben?

habe sie mal geplottet .....

wie finde ich denn rein von der aufgaber her raus wie der graph denn da überhaupt aussieht

dachte immer die äussere wäre da die dominierende aber die sieht ja ganz komisch aus :(
bzw. die sieht eher aus wie ne [mm] e^{-x²} [/mm] ( dere def.bereich ist ganz [R] das heist ich darf alles einsetzten ..... jetzt will ich aber wissen wann [mm] e^{-x²} [/mm] genau die def.lücken des tangens erreicht... kann mir das jemand erklären?)

also für tan wäre für mich die def.bereich [mm] ]-\pi/2 [/mm] ; [mm] \pi/2[ [/mm] usw.

danke!!!


        
Bezug
differentialrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:46 Sa 14.07.2007
Autor: bjoern.g

komisch hat er in der vorschau nicht angezeigt ....

also fkt ist [mm] tan(e^{-x²}) [/mm]

Bezug
        
Bezug
differentialrechnung: Hinweis
Status: (Antwort) fertig Status 
Datum: 12:51 Sa 14.07.2007
Autor: Loddar

Hallo Björn!


Die Teilfunktion [mm] $e^{-x^2}$ [/mm] bildet doch lediglich in das Intervall [mm] $\IR [/mm] \ [mm] \mapsto [/mm] \ [mm] \left] \ 0 \ ; \ 1 \ \right]$ [/mm] ab. Damit ist der Tangens doch gar kein Problem mehr, da der [mm] $\tan$ [/mm] für diese Werte eindeutig definiert ist.

[Dateianhang nicht öffentlich]


Gruß
Loddar


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
differentialrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:57 Sa 14.07.2007
Autor: bjoern.g

wieso bildet die denn nur in dem teilintervall ab ?? von 0 bis 1 ?
verstehe ich nicht :(

bzw. was würdest du als definitionsbereich aufschreiben


Bezug
                        
Bezug
differentialrechnung: siehe Skizze
Status: (Antwort) fertig Status 
Datum: 13:01 Sa 14.07.2007
Autor: Loddar

Hallo Björn!


Hast Du dir mal meine Skizze oben angesehen? Die Funktion $g(x) \ = \ [mm] e^{-x^2}$ [/mm] hat ihr (absolutes) Maximum bei $H \ [mm] \left( \ 0 \ ; \ \red{1} \ \right)$ [/mm] und nähert sich für [mm] $x\rightarrow\pm\infty$ [/mm] jeweils der x-Achse an.


Damit ist Deine o.g. Funktion auch für ganz [mm] $\IR$ [/mm] definiert.


Gruß
Loddar


Bezug
                                
Bezug
differentialrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:02 Sa 14.07.2007
Autor: bjoern.g

ja aber ich mein wie komm ich denn auf sowas

das sind ja klausur aufgaben und wir dürfen nix benutzen weder taschenrechner noch sonst was .......


wie kann ich rausfinden wie die fkt aussieht?

Bezug
                                        
Bezug
differentialrechnung: Kenntnisse e-Funktion
Status: (Antwort) fertig Status 
Datum: 13:05 Sa 14.07.2007
Autor: Loddar

Hallo Björn!


Das sind lediglich Kenntnisse über die e-Funktion und die Erkenntnis, dass die Teilfunktion $g(x) \ = \ [mm] e^{-x^2}$ [/mm] auch achsensymmetrisch zur y-Achse ist.

Und [mm] $\limes_{z\rightarrow-\infty}e^z [/mm] \ = \ 0$ sollte schon bekannt sein.


Gruß
Loddar


Bezug
                                                
Bezug
differentialrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:11 Sa 14.07.2007
Autor: bjoern.g

naja aber das das dann so aussieht.....

der tangens sieht ja gewöhnlich ganz anders aus..... gut ok ist ne verkette fkt aber das der so aussieht

no way würd ich nie drauf kommen

nullstellen würd ich noch bestimmen können klar naja höchstens dan halt über wendestellen mal probieren

melde mich gleich nochma obs geklappt hat ^^

Bezug
                                                        
Bezug
differentialrechnung: Tangens
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:14 Sa 14.07.2007
Autor: Loddar

Hallo Björn!


Hier spielt dann halt noch eine Rolle, dass der [mm] $\tan$ [/mm] für Werte $x \ [mm] \approx [/mm] \ 0$ wie folgt genähert werden kann:

[mm] $\tan(x) [/mm] \ [mm] \approx [/mm] \ x$

[Dateianhang nicht öffentlich]


Gruß
Loddar


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]