www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - die 2. ableitung bilden
die 2. ableitung bilden < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

die 2. ableitung bilden: Korrektur
Status: (Frage) beantwortet Status 
Datum: 11:07 Mi 10.10.2007
Autor: weissnet

HAllo!
ich muss die abletungen von dieser funktion bilden:

f(x)= (x hoch2) +1 /x+1

die erste ableitung habe ich schon gebildet, ich bin mir auch ganz sicher , dass es richtig ist. aber bei der zweiten ableitung bin ich mir nicht so sicher. kann mir bitte jmd. sagen, ob das richtig ist?

2. Ableitung: [mm] (2x^2)+(4x^2)+2-((2x^3+(4x^2)-2x) [/mm] ) / [mm] (x+1)^3 [/mm]



        
Bezug
die 2. ableitung bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 11:18 Mi 10.10.2007
Autor: koepper


> HAllo!
>  ich muss die abletungen von dieser funktion bilden:
>  
> f(x)= (x hoch2) +1 /x+1
>  
> die erste ableitung habe ich schon gebildet, ich bin mir
> auch ganz sicher , dass es richtig ist. aber bei der
> zweiten ableitung bin ich mir nicht so sicher. kann mir
> bitte jmd. sagen, ob das richtig ist?

> 2. Ableitung: [mm](2x^2)+(4x^2)+2-((2x^3+(4x^2)-2x)[/mm] ) /
> [mm](x+1)^3[/mm]

Hallo,

wenn das alles ist, was du willst. Nichts leichter als das.

Es ist nicht richtig.

Gruß,Will






P.S: Der Zähler ist falsch. Dort muss eine einfache Zahl stehen.
Wenn du auch deinen Rechenweg postest, dann können wir dir sagen, wo der Fehler liegt.


Bezug
                
Bezug
die 2. ableitung bilden: korrektur
Status: (Frage) beantwortet Status 
Datum: 11:30 Mi 10.10.2007
Autor: weissnet

also bei der 1. ableitung habe ich

[mm] (x^2)+2x-1 [/mm] / [mm] (x+1)^2 [/mm]

und nun die 2. ableitung:
f"(x)= [mm] (2x+2)(x+1)-((x^2) +2x-1))*(2(x+1)^1 [/mm] )*1 / [mm] (x+1)^4 [/mm]

      =(2x+2) [mm] (x+1)-((x^2)+2x-1))*2x /(x+1)^3 [/mm]

      = [mm] (2x^2)+2x+2x+2-((2x^3)+ (4x^2)-2x) [/mm] / [mm] (x+1)^3 [/mm]

Bezug
                        
Bezug
die 2. ableitung bilden: korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:42 Mi 10.10.2007
Autor: weissnet

kann mir bitte jmd sagen , wo ich hier einen fehler gemacht habe?

Bezug
                        
Bezug
die 2. ableitung bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 11:51 Mi 10.10.2007
Autor: angela.h.b.

Hallo,

wenn Du die notwendigen Klammern setzen oder Bruchstriche verwenden würdest, wäre das hilfreich.

> also bei der 1. ableitung habe ich
>  
> [mm](x^2)+2x-1[/mm] / [mm](x+1)^2[/mm]

Du willst also [mm] f'(x)=\bruch{x^2+2x-1}{(x+1)^2} [/mm] ableiten.

> und nun die 2. ableitung:
>  f"(x)= [mm](2x+2)(x+1)^2-((x^2) +2x-1))*(2(x+1)^1[/mm] )*1 / [mm](x+1)^4[/mm]
>  
> =((2x+2) [mm](x+1)-((x^2)+2x-1))*2x) /(x+1)^3[/mm]

Das x vorm Divisionsstrich ist verkehrt (zuviel), ich nehme an, daß es ein Schreibfehler beim Kürzen ist.

Gruß v. Angela


Bezug
                                
Bezug
die 2. ableitung bilden: rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:01 Mi 10.10.2007
Autor: weissnet

ich verstehe das irgendwie nicht...kannst du mir bitte helfen??

Bezug
                                        
Bezug
die 2. ableitung bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 13:20 Mi 10.10.2007
Autor: angela.h.b.


> ich verstehe das irgendwie nicht...kannst du mir bitte
> helfen??

Hallo,

unter "das irgendwie" kann ich mir verflixt wenig vorstellen.

Ich glaube, daß es schon sehr helfen würde, wenn Du alles vernünftig und übersichtlich aufschriebest.

Du hast lediglich beim Kürzen einen Fehler gemacht.

Abgeleitet werden soll  $ [mm] f'(x)=\bruch{x^2+2x-1}{(x+1)^2} [/mm] $ .

Du schriebst:
>>> und nun die 2. ableitung:
>>>  f"(x)= $ [mm] (2x+2)(x+1)^2-((x^2) +2x-1))\cdot{}(2(x+1)^1 [/mm] $ )*1 / $ [mm] (x+1)^4 [/mm] $
>>>  
>>> =((2x+2) $ [mm] (x+1)-((x^2)+2x-1))\cdot{}2x) /(x+1)^3 [/mm] $

Ins Leserliche übersetzt steht dort

[mm] f"(x)=\bruch{(2x+2)(x+1)^2-(x^2 +2x-1))\cdot{}(2(x+1)^1*1)}{ (x+1)^4}=\bruch{(2x+2)(x+1)-(x^2+2x-1)*2x}{(x+1)^3} [/mm]

Das letzte x auf dem Bruchstrich ist zuviel. Du hast doch  (x+1) gekürzt.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]